

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 1. PRODUCT DESCRIPTION

Description

WCF-EASF bonded anchoring system is a 100% acrylate polymer with very low VOC content offering very high performance in both cracked and uncracked concrete, and under seismic conditions (C1). WCF-EASF together with its variations is one of the most versatile anchoring systems in our range.

Storage

Cartridges should be stored in their original packaging, the correct way up, in cool conditions (+5°C to +25°C) out of direct sunlight. When stored correctly, the product shelf life will be 18 months from the date of manufacture.

Base materials

-Cracked and uncracked concrete -Solid and hollow masonry -Solid rock -Hard natural stone -Voided stone or rock

Safety

Accessories

-Mixing nozzles

-Cleaning blow pump

Approvals & Tests

-Cleaning brushes

-Extension tubes

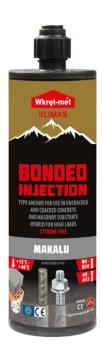
-Resin stoppers

0601

-Applicators

For health and safety information, please refer to the relevant Safety Data Sheet.

-ETA Option 1 for cracked and uncracked concrete; EAD 330499-01-


-ETA according to ETAG 001, Part 1 and Part 5, edition 2013 and

-ETA for EAD 330076-00-0604, injection anchors for use in masonry

-Approved for seismic action Categories C1 according to EN 1992-4

Technical Report TR023 for post-installed rebar connections

-Meets the requirements of LEED v4.1 specifications

Features

-Suitable for use with close edge distance and small anchor spacings -Suitable for dry, wet & flooded holes

- -Reduced drilling diameters, 22mm for M20 and 26mm for M24; results in significant material and labour savings.
- -Variable embedment depths 8d to 20d
- -Available in co-axial cartridges (410 ml)

- Available with various drilling & cleaning methods - (Hammer drilling, Dustless drilling, Diamond drilling) & (Manual pump cleaning, Compressed air cleaning, Hollow Drill Bit cleaning system, Flushing with pressurised water)

Uses/Applications

- Anchoring of steel constructions to concrete structural components

 Anchoring of base plates, brackets, consoles in high/medium load applications

- Strengthening and reinforcement of concrete members in existing superstructure (old

buildings restoration, bridges renovation, etc.)
Wide range of post-installed rebar connections including anchorage and overlap joint applications (e.g. slab to slab at support,

overlap joint at a foundation of column or wall, etc.)

-Canopies -Boilers -Bicycle Racks -Hand Rails -Safety Barriers -Balcony Fences -Racking -Machinery -Satellite Dishes

-Approved for 100 years design working life

-New improved installation temperature range

All rights reserved The sheet may be disclosed only in the form as delivered. No part (contents such as text, graphics, logos, figures, pictures, and any other data) given in this document may be modified or published whatsoever in part, without prior authorisation. Any trademarks, graphic symbols, trade names, logos and other data are protected by copyright and are property of their owner. Created: 2023-12-04

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 2. WORKING & LOADING TIMES

WORKING & LOADING TIMES FOR APPLICATIONS ACCORDING TO EN-1992-4 - DESIGN OF FASTENINGS FOR USE IN CONCRETE AND MASONRY BASE MATERIAL APPLICATIONS

WCF-EASF - Working & Loading T	WCF-EASF - Working & Loading Times										
Resin cartridge temperature	T Work [min]	Base material Temperature [°C]	T Load [min]								
[°C]											
+10	30 mins	-10 do -5	24 hours								
+5	20 mins	-5 do 0	300 mins								
0 do +5	15 mins	0 do +5	210 mins								
+5 do +10	10 mins	+5 do +10	145 mins								
+10 do +15	8 mins	+10 do +15	85 mins								
+15 do +20	6 mins	+15 do +20	75 mins								
+20 do +25	5 mins	+20 do +25	50 mins								
+25 do +30	4 mins	+25 do +30	40 mins								

WCF-EASF-C - Working & Loading	WCF-EASF-C - Working & Loading Times										
Resin cartridge temperature	T Work [min]	Base material Temperature [°C]	T Load [min]								
[°C]											
+20	40 min	-20 do -15	24 godz.								
+20	30 min	-15 do -10	18 godz.								
+5	20 min	-10 do -5	12 godz.								
+5	15 min	-5 do 0	100 min								
0 do +5	10 min	0 do +5	75 min								
+5 do +20	5 min	+5 do +20	50 min								
+20	100 sekund	+20	20 min								

WCF-EASF-E - Working & Loading Times										
Resin cartridge temperature [°C]	T Work [min]	Base material Temperature [°C]	T Load [min]							
+15 do +20	15 min	+15 do +20	5 godz.							
+20 do +25	10 min	+20 do +25	145 min							
+25 do +30	7,5 min	+25 do +30	85 min							
+30 do +35	5 min	+30 do +35	50 min							
+35 do +40	3,5 min	+35 do +40	40 min							
T work - is typical gel time at highest ten	nperature	T load - is set at the lowest temperature								

WORKING & LOADING TIMES FOR POST-INSTALLED REBAR APPLICATIONS

CF-EASF - Working & Loading Times								
Cartridge Temperature	T Work	Base Material Temperature	T Load					
	10 Minutes	5°C to 10°C	145 Minutes					
Γ	8 Minutes	10°C to 15°C	85 Minutes					
5°C	6 Minutes	15°C to 20°C	75 Minutes					
Γ	5 Minutes	20°C to 25°C	50 Minutes					
	4 Minutes	25°C to 30°C	40 Minutes					

Note: T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

WCF-EASF-C - Working & Loading Times										
Cartridge Temperature	T Work	Base Material Temperature	T Load							
	10 Minutes	0°C to 5°C	75 Minutes							
0°C	5 Minutes	5°C to 20°C	50 Minutes							
	100 seconds	+20°C	20 Minutes							

Note: T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

WCF-EASF-E - Working & Loading Times									
Cartridge Temperature	T Work	Base Material Temperature	T Load						
	15 Minutes	15°C to 20°C	5 hours						
	10 Minutes	20°C to 25°C	145 Minutes						
+15°C	7.5 Minutes	25°C to 30°C	85 Minutes						
	5 Minutes	30°C to 35°C	50 Minutes						
	3.5 Minutes	35°C to 40°C	40 Minutes						

Note: T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

All rights reserved The sheet may be disclosed only in the form as delivered. No part (contents such as text, graphics, logos, figures, pictures, and any other data) given in this document may be modified or published whatsoever in part, without prior authorisation. Any trademarks, graphic symbols, trade names, logos and other data are protected by copyright and are property of their owner. Created: 2023-12-04

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 3. PHYSICAL PROPERTIES

	Physical Properties							
Property		Value	Unit	Test Standard				
Compressive Strength	Comproscius Strength 24 hrs 72.3		BS6319					
compressive Strength	7 days	77.8	N/mm ²	00019				
Z4 hrs13.57 days15.2	NI/mm²	ASTM D 638 @ +20°C						
	7 days	15.2	N/mm ⁻					
Elongation at Break	24 hrs	6	%	ASTM D 638 @ +20°C				
Liongation at break	7 days	6.7	%	70				
Tensile Modulus	24 hrs	3.75	CN1/m ²	ASTM D 638 @ +20°C				
	7 days	3.8	GN/m ²					
Flexural Strength	7 days	28.3	N/mm ²	ASTM D 790 @ +20°C				

Section 4. CHEMICAL RESISTANCE

Chemical Resistance										
Chemical Environment	Concentration	Result	Chemical Environment	Concentration	Result					
Aqueous Solution Acetic Acid	10%	С	Hexane	100%	С					
Acetone	100%	×		10%	✓					
Aqueous Solution Aluminium Chloride	Saturated	\checkmark	Hydrochloric Acid	15%	~					
Aqueous Solution Aluminium Nitrate	10%	~		20%	С					
Ammonia Solution	5%	×	Hydrogen Sulphide Gas	100%	✓					
Jet Fuel	100%	×	Linseed Oil	100%	\checkmark					
Benzoic Acid	Saturated	\checkmark	Lubricating Oil	100%	✓					
Sodium Hypochlorite Solution	5 - 15%	\checkmark	Mineral Oil	100%	\checkmark					
Butyl Alcohol	100%	С	Paraffin / Kerosene (Domestic)	100%	С					
Calcium Sulphate Aqueous Solution	Saturated	\checkmark	Phenol Aqueous Solution	1%	×					
Carbon Monoxide	Gas	\checkmark	Phosphoric Acid	Desene (Domestic)100%eous Solution1%Acid50%lydroxide10% / pH13						
Carbon Tetrachloride	100%	С	Potassium Hydroxide	10% / pH13	\checkmark					
Chlorine Water	Saturated	×	Sea Water	100%	С					
Chloro Benzene	100%	С	Sulphur Dioxide Solution	10%	~					
Citric Acid Aqueous Solution	Saturated	\checkmark	Sulphur Dioxide (40°C)	5%	✓					
Cyclohexanol	100%	\checkmark		10%	\checkmark					
Diesel Fuel	100%	С	– Sulphuric Acid	30%	~					
Diethylene Glycol	100%	\checkmark	Turpentine	100%	С					
Ethanol	95%	×	White Spirit	100%	✓					
Heptane	100%	С	Xylene	100%	×					

 \checkmark = Resistant to 75°C with at least 80% of physical properties retained.

C = Contact only to a maximum of 25°C. \times = Not resistant.

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 5. SOLID SUBSTRATE INSTALLATION METHOD

SOLID SUBSTRATE INSTALLATION METHOD

1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth

2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). A manual pump may be used for certain diameters and depths; check the approval document. Perform the blowing operation twice.

Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.
 Repeat step 2 (blowing operation x2)
 Repeat step 2 (blowing operation x2)

7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.

 Extrude some resin to waste until an even coloured mixture is achieved. The cartridge is now ready for use.

9. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ¾ full and remove the nozzle from the hole.

10. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

11. Clean any excess resin from around the mouth of the hole.

12. Refer to the working and loading times within

the tables to determine the appropriate cure time. 13. Position the fixture and tighten the anchor to the appropriate installation torque. Do not over-torque the anchor, as this could adversely affect its performance.

DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

2a. Attach the correct diameter and length extension tube to the nozzle. Select the correct diameter resin stopper for the application, then push and screw the extension tube into the resin stopper. This is held in place with a coarse internal thread. The resin stopper is a reusable accessory.

3a. Push the resin stopper and extension tube to the back of the drill hole.

4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is extruded.

5a. Continue from step 10 under "solid substrate installation method".

DIAMOND CORE DRILLING

1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.

2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.

3b. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4b. Repeat step 2b (flushing operation x2).

5b. Repeat step 3b (brushing operation x2).

6a. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.

7a. Continue from step 7 under "solid substrate installation method".

DUSTLESS DRILLING

1c. Using the specified hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifications are met and that the vacuum is turned on.

2c. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.

3c. Continue from step 7 under "solid substrate installation method".

•••	
	- 4
() ()	x2
	xs

 \mathcal{G}

PRODUCT DATA SHEET - WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 6. INSTALLATION PARAMETERS – THREADED ROD

Installation parameters of threaded rod										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	Φd_0	[mm]	10	12	14	18	22	26	30	35
Diameter of cleaning brush	d _b	[mm]	14	14	20	20	29	29	40	40
Manual pump cleaning					h _{ef} < 30	0 mm				
Torque moment	max T _{fix}	[Nm]	10	20	40	80	150	200	240	275
Depth of drill hole for hef,min	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	192	216	240
Depth of drill hole for h _{ef,max}	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	480	540	600
Minimum edge distance	C _{min}	[mm]	35	40	50	65	80	96	110	120
Minimum spacing	S _{min}	[mm]	35	40	50	65	80	96	110	120
Minimum thickness of member	h _{min}	[mm]	h	_{ef} + 30 mm	≥ 100 m	m		h _{ef}	+ 2d ₀	

Section 7. CHARACTERISTIC RESISTANCE – COMBINED PULL-OUT & CONCRETE CONE FAILURE USING THREADED RODS – HAMMER DRILLING METHOD & DUSTLESS DRILLING METHOD

Characteristic values of resista	nce to tension loa	d of thre	aded rod								
Combined pullout and concrete c	one failure in conci	rete C20/2	25								
Hammer drilling						-		-	-		
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in	uncracked concret					0 years					
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	10,0	9,5	9,5	9,0	8,5	8,0	6,5	5,5
Installation safety factor		Yinst	[-]			1,					1,4
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	8,5	7,5	7,0	7,0	6,5	5,5		
Installation safety factor		Yinst	[-]				1,4				
Rozmiar				M10		M12	M16		M20		M24
Characteristic bond resistance in	cracked concrete f		1								
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	4,5		4,5	4,5		4,0		4,0
Installation safety factor		γinst	[-]				1,2				
Flooded hole		τ _{Rk,cr}	[N/mm ²]	4,5		4,5	4,5		4,0		4,0
Installation safety factor		Yinst	[-]				1,4				
Characteristic bond resistance in	cracked concrete f		ing life of 1	00 years							
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	3,0		3,0	3,0		2,5		2,5
Installation safety factor		γinst	[-]				1,2				
Flooded hole		$\tau_{\rm Rk,cr}$	[N/mm ²]	3,0		3,0	3,0		2,5		2,5
Installation safety factor		Yinst	[-]				1,4				
Dustless drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in	uncracked concret	e for a wo	orking life o	f 50 years	s and 10	0 years			1	1	
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	10,0	9,5	9,5	9,0	8,5	8,0	6,5	5,5
Installation safety factor		γinst	[-]				1,2				
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	8,5	7,5	7,0	7,0	6,5	5,5	4,5	4,0
Installation safety factor		Yinst	[-]				1,4				
Rozmiar				M10	1	M12	M16		M20		M24
Characteristic bond resistance in	cracked concrete f	or a work	ing life of 5	0 years							
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	4,5		4,5	4,5		4,0		4,0
Installation safety factor		γinst	[-]				1,2				
Flooded hole		τ _{Rk,cr}	[N/mm ²]	4,5		4,5	4,5		4,0		4,0
Installation safety factor		γinst	[-]				1,4				
Characteristic bond resistance in	cracked concrete f	or a work	ing life of 1	00 years							
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	3,0		3,0	3,0		2,5		2,5
Installation safety factor		γinst	[-]				1,2				
Flooded hole		τ _{Rk,cr}	[N/mm ²]	3,0		3.0	3,0		2,5		2,5
Installation safety factor		Yinst	[-]	-,-		,-	1,4	1	,-		, -
Factor for uncracked concrete	C50/60	ψ _c	[-]				1				
	C30/37						1,12	2			
	C40/50	ψc	[-]				1,23	3			
Factor for cracked concrete	C50/60		_				1,30)			
Factor for influence of sustained	T1: 24°C / 40°C	Ψ ⁰ sus	[-]				0,75				
load for a working life 50 years	T2: 50°C / 80°C	∓ sus	11				0,73	3			
Concrete cone failure		1	1	1			_				
Factor for concrete cone failure for		K _{ucr,N}	[-]				11				
Factor for concrete cone failure for o	cracked concrete	K _{cr,N}					7,7				
Edge distance		C _{cr,N}	[mm]				1,5h	ef			

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 8. CHARACTERISTIC RESISTANCE – COMBINED PULL-OUT & CONCRETE CONE FAILURE USING THREADED RODS – HAMMER DRILLING METHOD & DUSTLESS DRILLING METHOD FOR WCF-EASF-C WITH INSTALLATION TEMPERATURE < - 10 °C

Combined pullout and concrete c	one failure in conci	ete C20/2	25								
Hammer drilling			•								
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in	uncracked concret	e for a wo	orking life o								1
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	9,0	8,5	8,0	7,5	6.0	5,0
Installation safety factor		Yinst	[-]	0,0	0,0	1,		0,0	.,0	· · ·	1,4
Otwór zalany wodą		τ _{Rk,ucr}	[N/mm ²]	8,0	7,0	6,5	6,5	6,0	6,0	_	
Installation safety factor		Yinst	[-]	0,0	1,0	0,0	1,4	0,0	0,0		
Rozmiar		i nat		M10		M12	M16		M20		M24
Characteristic bond resistance in	cracked concrete f	or a work	ing life of 5	0 years							
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	4,0		4,0	4,0		3,5		3,5
Installation safety factor		Yinst	[-]	1-		1-	1,2		- / -		- / -
Flooded hole		τ _{Rk,cr}	[N/mm ²]	4,0		4,0	4,0		3,5		3,5
Installation safety factor		Yinst	[-]	1,0	I	.,•	1,4	11	0,0		-,-
Characteristic bond resistance in	cracked concrete f			00 years			.,-				
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	2,5		2,5	2,5		2,0		2,0
Installation safety factor		Yinst	[-]	2,0	1	_,•	1,2	1	_,0	-	_,~
Flooded hole		τ _{Rk,cr}	[N/mm ²]	2,5		2,5	2,5		2,0		2,0
Installation safety factor		Yinst	[-]	2,0		2,0	1,4		2,0		2,0
		YIIISU					1,7				
Dustless drilling											
Size Characteristic hand resistance in	unavaskad sanavat	- for	arking life e	M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in											
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	9,5	9,0	9,0	8,5	8,0	7,5	6,0	5,0
Installation safety factor		Yinst	[-]			1 1	1,2		r		
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	8,0	7,0	6,5	6,5	6,0	5,0	4,0	3,5
Installation safety factor		γinst	[-]				1,4				
Rozmiar	arealised concrete f		ing life of F	M10		M12	M16		M20		M24
Characteristic bond resistance in	cracked concrete r								~ -		
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	4,0		4,0	4,0		3,5		3,5
Installation safety factor		Yinst	[-]				1,2		т		
Flooded hole		τ _{Rk,cr}	[N/mm ²]	4,0		4,0	4,0		3,5		3,5
Installation safety factor		γinst	[-]				1,4				
Characteristic bond resistance in	cracked concrete f					<u> </u>					
Dry and wet concrete		τ _{Rk,cr}	[N/mm ²]	2,5		2,5	2,5		2,0		2,0
Installation safety factor		γinst	[-]				1,2			-	
Flooded hole		τ _{Rk,cr}	[N/mm ²]	2,5		2,5	2,5		2,0		2,0
Installation safety factor		Yinst	[-]				1,4				
Factor for uncracked concrete	C50/60	ψc	[-]				1				
	C30/37						1,12				
Factor for cracked concrete	C40/50	ψc	[-]				1,23				
	C50/60						1,30				
Factor for influence of sustained	T1: 24°C / 40°C	Ψ^{0}_{sus}	[-]				0,75				
load for a working life 50 years	T2: 50°C / 80°C	+ sus	1]				0,73				
Concrete cone failure											
			See Section	7.							
										-	

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 9. CHARACTERISTIC RESISTANCE – COMBINED PULL-OUT & CONCRETE CONE FAILURE USING THREADED RODS – DIAMOND CORE DRILLING METHOD

Characteristic values of resistance to tension load of threaded rod - Diamond core drilling method Combined pullout and concrete cone failure in concrete C20/25 **Diamond core drilling** M8 M10 M12 M16 M20 M24 M27 M30 Size Characteristic bond resistance in uncracked concrete for a working life of 50 years and 100 years 7,0 Dry and wet concrete τ_{Rk,uci} [N/mm²] 9,0 8,5 8,5 8,0 7,5 5,5 4,5 Installation safety factor 1,0 γ_{inst} [-] τ_{Rk,uci} Flooded hole [N/mm²] 8,0 7,0 6,5 6,5 6,0 5,0 4,0 3,5 Installation safety factor 1.4 γ_{inst} [-] C30/37 1,04 C40/50 Factor for uncracked concrete ψc [-] 1.07 C50/60 1,09 Factor for influence of sustained load Ψ^0_{sus} [-] 0,77 for a working life 50 years Concrete cone failure 11 Factor for concrete cone failure for uncracked concrete K_{ucr,N} [-] Edge distance C_{cr,N} 1.5h [mm] Splitting failure Size M8 M10 M12 M16 M20 M24 M27 M30 Edge distance C_{cr,sp} [mm] $1,5h_{ef}$ Spacing Scr,sp [mm] 3,0het

Section 10. CHARACTERISTIC RESISTANCE – COMBINED PULL-OUT & CONCRETE CONE FAILURE USING THREADED RODS – DIAMOND CORE DRILLING METHOD FOR WCF-EASF-C WITH INSTALLATION TEMPERATURE < - 10 °C

Characteristic values of resistance to tension load of threaded rod for WCF-EASF-C with installation temperature < - 10 °C Combined pullout and concrete cone failure in concrete C20/25

Diamond core drilling											
Size				M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance in u	incracked concr	ete for a w	orking life o	f 50 yea	rs and 10	0 years					
Dry and wet concrete		$\tau_{_{Rk,ucr}}$	[N/mm ²]	8,5	8,0	8,0	7,5	7,0	6,5	5,0	4,0
Installation safety factor		γinst	[-]				1,0)			
Flooded hole	[N/mm ²]	7,5	6,5	6,0	6,0	5,5	4,5	3,5	3,0		
Installation safety factor γ _{inst} [-]							1,4	Ļ			
	C30/37						1,04	4			
Factor for uncracked concrete	C40/50	ψc	[-]				1,0	7			
	C50/60						1,09	9			
Factor for influence of sustained load for a working life 50 years		Ψ^0_{sus}	[-]				0,7	7			
Concrete cone failure											
	See Section	9.									
Splitting failure											
		See Section	11								

Section 11. SPLITTING FAILURE

Splitting failure										
Size			M8	M10	M12	M16	M20	M24	M27	M30
Edge distance	C _{cr,sp}	[mm]				1,5h,	ef			
Spacing	S _{cr,sp}	[mm]				3,0h	ef			

PRODUCT DATA SHEET - WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 12. RESISTANCE VALUES FOR THREADED ROD IN UNCRACKED CONCRETE -50 YEARS WORKING LIFE -HAMMER DRILLING METHOD

Resistance Values for Threaded Rod in Uncracked Concrete - 50 Years Working Life

Combined Pullout & Concrete Cone Failure and Concrete Cone Failure

Droporty		Unit				Anch	or Diamete	r		
Property		Unit	M8	M10	M12	M16	M20	M24	M27	M30
Effective Embedment Depth = MIN = 8d	h _{ef}	mm	64	80	96	128	160	192	216	240
Design Resistance	N _{Rd}	kN	8.5	13.0	19.0	32.0	47.0	64.0	56.5	59.0
Effective Embedment Depth = 8d	h _{ef}	mm	64	80	96	128	160	192	216	240
Design Resistance	N _{Rd}	kN	8.5	13.0	19.0	32.0	47.0	64.0	56.5	59.0
Effective Embedment Depth = 10d	h _{ef}	mm	80	100	120	160	200	240	324	360
Design Resistance	N _{Rd}	kN	11.0	16.5	23.5	40.0	59.0	80.0	85.0	88.5
Effective Embedment Depth = 12d	h _{ef}	mm	96	120	144	192	240	288	540	600
Design Resistance	N _{Rd}	kN	13.0	19.5	28.5	48.0	71.0	96.5	141.5	148

1. Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for steel failure must also be considered - the lowest value controls.

2. Resistance values are for single anchors without close edges or eccentric loading considerations.

3. Tabulated values correspond to the above stated temperature range and installation conditions only.

4. Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling

5. The cylinder compressive strength of the concrete (fck), is assumed to be 20 N/mm2.

6. Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Section 13. RESISTANCE VALUES FOR THREADED ROD IN CRACKED CONCRETE -50 YEARS WORKING LIFE – HAMMER **DRILLING METHOD**

Resistance Values for Threaded Rod in Cracked Concrete - 50 Years Working life

Combined Pullout & Concrete Cone Failure and Concrete Cone Failure

Temperature Range: -40°C to 80°C						Ancho	or Diamete	er		
Property		Unit		M10	M12	M16	M20	M24	-	-
Effective Embedment Depth = MIN = 8d	h _{ef}	mm	-	80	96	128	160	192	-	-
Design Resistance	N _{Rd}	kN	-	6.0	9.0	16.0	22.0	32.0	-	-
Effective Embedment Depth = 12d	h _{ef}	mm	-	120	144	192	240	288	-	-
Design Resistance	N _{Rd}	kN	-	9.0	13.5	24.0	33.5	48.0	-	-
Effective Embedment Depth = 20d	h _{ef}	mm	-	200	240	320	400	480	-	-
Design Resistance	N _{Rd}	kN	-	15.5	22.5	40.0	55.5	80.0	-	-

1. Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for steel failure must also be considered - the lowest value controls.

2. Resistance values are for single anchors without close edges or eccentric loading considerations.

3. Tabulated values correspond to the above stated temperature range and installation conditions only.

5. The cylinder compressive strength of the concrete (fck), is assumed to be 20 N/mm2.

6. Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

^{4.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling.

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 14. THREADED RODS – CHARACTERISTIC VALUES FOR STEEL FAILURE (TENSION)

Threaded Rods - Characteristic Values for St	teel Failure	(Tension)								
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel Grade KPG 4.6	N _{Rk,s}	kN	15	23	34	63	98	141	184	224
Partial Safety Factor	Y _{Ms}	[-]					2,00			
Steel Grade KPG 5.8	N _{Rk,s}	kN	18	29	42	79	123	177	230	281
Partial Safety Factor	Y _{Ms}	[-]					1.50			
Steel Grade KPG 8.8	N _{Rk,s}	kN	29	46	67	126	196	282	367	449
Partial Safety Factor	Y _{Ms}	[-]					1.50			
Steel Grade KPG 10.9*	N _{Rk,s}	kN	37	58	84	157	245	353	459	561
Partial Safety Factor	Y _{Ms}	[-]					1.33			
Stainless Steel Grade KPG A2-70, KPG A4-70	N _{Rk,s}	kN	26	41	59	110	172	247	321	393
Partial Safety Factor	Y _{Ms}	[-]					1.87			
Stainless Steel Grade KPG A4-80	N _{Rk,s}	kN	29	46	67	126	196	282	367	449
Partial Safety Factor	Y _{Ms}	[-]					1.60			
Stainless Steel Grade KPG HCR	N _{Rk,s}	kN	26	41	59	110	172	247	321	393
Partial Safety Factor	Y _{Ms}	[-]					1.50			
Stainless Steel Grade KPG UHCR	N _{Rk,s}	kN	26	41	59	110	172	247	321	393
Partial Safety Factor	Y _{Ms}	[-]					1,87			

Section 15. THREADED RODS – CHARACTERISTIC VALUES FOR STEEL FAILURE (SHEAR – WITHOUT LEVER ARM)

Threaded Rods - Characteristic Values for S	teel Failure	(Shear – v	vithout l	ever ar	m)					
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel Grade KPG 4.6	V _{Rk,s}	kN	7	12	17	31	49	71	92	112
Partial Safety Factor	Y _{Ms}	[-]					1.67			
Steel Grade KPG 5.8	V _{Rk,s}	kN	9	15	21	39	61	88	115	140
Partial Safety Factor	Y _{Ms}	[-]					1.25			
Steel Grade KPG 8.8	V _{Rk,s}	kN	15	23	34	63	98	141	184	224
Partial Safety Factor	Y _{Ms}	[-]					1.25			
Steel Grade KPG 10.9 *	V _{Rk,s}	kN	18	29	42	79	123	177	230	281
Partial Safety Factor	Y _{Ms}	[-]					1.50			
Stainless Steel Grade KPG A2-70, KPG A4-70	V _{Rk,s}	kN	13	20	30	55	86	124	161	196
Partial Safety Factor	Y _{Ms}	[-]					1.56			
Stainless Steel Grade KPG A4-80	V _{Rk,s}	kN	15	23	34	63	98	141	184	224
Partial Safety Factor	Y _{Ms}	[-]					1.33			
Stainless Steel Grade KPG HCR	V _{Rk,s}	kN	13	20	30	55	86	124	161	196
Partial Safety Factor	Y _{Ms}	[-]					1.25			
Stainless Steel Grade KPG UHCR	V _{Rk,s}	kN	13	20	30	55	86	124	161	196
Partial Safety Factor	Y _{Ms}	[-]					1,56			

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 16. THREADED RODS – CHARACTERISTIC VALUES FOR STEEL FAILURE (SHEAR – WITH LEVER ARM)

Threaded Rods - Characteristic Values for	eaded Rods - Characteristic Values for Steel Failure (Sh									
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel Grade 4.6	M ⁰ _{Rk,s}	N.m	15	30	52	133	260	449	666	900
Partial Safety Factor	Y _{Ms}	[-]					1.67			
Steel Grade 5.8	M ⁰ _{Rk,s}	N.m	19	37	66	166	325	561	832	1125
Partial Safety Factor	γ_{Ms}	[-]					1.25			
Steel Grade 8.8	M ⁰ _{Rk,s}	N.m	30	60	105	266	519	898	1332	1799
Partial Safety Factor	γ_{Ms}	[-]					1.25			
Steel Grade 10.9*	M ⁰ _{Rk,s}	N.m	37	75	131	333	649	1123	1664	2249
Partial Safety Factor	Y _{Ms}	[-]					1.50			
Stainless Steel Grade A4-70	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786	1165	1574
Partial Safety Factor	Y _{Ms}	[-]					1.56			
Stainless Steel Grade A4-80	M ⁰ _{Rk,s}	N.m	30	60	105	266	519	898	1332	1799
Partial Safety Factor	Y _{Ms}	[-]					1.33			
Stainless Steel Grade 1.4529	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786	1165	1574
Partial Safety Factor	Y _{Ms}	[-]					1.25			
Stainless Steel Grade 1.4565	M ⁰ _{Rk,s}	N.m	26	52	92	233	454	786	1165	1574
Partial Safety Factor	Y _{Ms}	[-]					1,56			
Concrete pry-out failure										
Factor for resistance to pry-out failure	K ₈	[-]					2			

Section 17. INSTALLATION PARAMETERS - REBAR

Installation parameters of rebar									
Size			Φ8	Φ10	Φ12	Φ16	Φ20	Φ25	Ф32
Nominal drill hole diameter	Φd_0	[mm]	12	14	16	20	25	32	40
Diameter of cleaning brush	d _b	[mm]	14	14	19	22	29	40	42
Manual pump cleaning				ł	n _{ef} < 300 mi	n			
Depth of drill hole for h _{ef,min}	$h_0 = h_{ef}$	[mm]	64	80	96	128	160	200	256
Depth of drill hole for h _{ef,max}	$h_0 = h_{ef}$	[mm]	160	200	240	320	400	500	640
Minimum edge distance	C _{min}	[mm]	35	40	50	65	80	100	130
Minimum spacing	S _{min}	[mm]	35	40	50	65	80	100	130
Minimum thickness of member	h _{min}	[mm]		h _{ef} + 30 mr	n ≥ 100 mn	n		$h_{ef} + 2d_0$	

Section 18. CHARACTERISTIC RESISTANCE – COMBINED PULL-OUT & CONCRETE CONE FAILURE FOR REBAR -HAMMER DRILLING METHOD & DUSTLESS DRILLING METHOD

Characteristic values of resistan	ce to tension load	of rebar								
Combined pullout and concrete co	one failure in uncrack	ed concret	e C20/25							
Hammer drilling										
Size				Φ8	Φ10	Φ12	Φ16	Φ20	Φ25	Ф32
Characteristic bond resistance in u	uncracked concrete f	or a workin	g life of 50	years and	100 years	-				
Dry and wet concrete		$\tau_{_{Rk,ucr}}$	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor		γinst	[-]				1,2			
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor		γinst	[-]			•	1,4			
Factor for influence of sustained	T1: 24°C / 40°C	Ψ ⁰ sus	[-]				0,75			
load for a working life 50 years	T2: 50°C / 80°C		[-]				0,73			
Dustless drilling										
Size				Φ8	Φ10	Φ12	Φ 16	Φ20	Φ25	Φ32
Characteristic bond resistance in u	uncracked concrete f	or a workin	g life of 50	years and	100 years					
Dry and wet concrete		$\tau_{_{Rk,ucr}}$	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor		γinst	[-]				1,2			
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	11,0	9,5	9,5	9,0	8,5	8,5	5,5
Installation safety factor		γinst	[-]				1,4			
Factor for concrete C50/60		ψc	[-]				1			
Factor for influence of sustained T1: 24°C / 40°C [-] 0,75										

All rights reserved The sheet may be disclosed only in the form as delivered. No part (contents such as text, graphics, logos, figures, pictures, and any other data) given in this document may be modified or published whatsoever in part, without prior authorisation. Any trademarks, graphic symbols, trade names, logos and other data are protected by copyright and are property of their owner. Created: 2023-12-04

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

load for a working life 50 years	T2: 50°C / 80°C	Ψ^0_{sus}					0,73				
Concrete cone failure											
Factor for concrete cone failure		K _{ucr,N}	[-]				11				
Edge distance		C _{cr,N}	[mm]				1,5h _{ef}				
Splitting failure											
Size				Φ8	Φ10	Φ12	Φ 16	Φ20	Φ25	Φ32	
Edge distance		C _{cr,sp}	[mm]	1,5h _{ef}							
Spacing		S _{cr,sp}	[mm]			:	3,0h _{ef}				

Section 19. CHARACTERISTIC RESISTANCE – COMBINED PULL-OUT & CONCRETE CONE FAILURE FOR REBAR -HAMMER DRILLING METHOD & DUSTLESS DRILLING METHOD FOR WCF-EASF-C WITH INSTALLATION TEMPERATURE < - 10 °C

Characteristic values of resistan	ce to tension load	of rebar fo	or WCF-EAS	SF-C with i	installatio	on temp	perature	< - 10 °	С	
Combined pullout and concrete co	ne failure in uncracl	ked concret	e C20/25							
Hammer drilling					-	-		-		
Size				Φ8	Φ10	Φ12	Φ16	Φ20	Φ25	Ф32
Characteristic bond resistance in u	uncracked concrete	for a workin	ng life of 50	years and	100 years		-		-	
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
Installation safety factor		γinst	[-]				1,2		-	-
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
Installation safety factor		γ _{inst}	[-]				1,4			
Dustless drilling					-	-		-		
Rozmiar				Φ8	Φ10	Φ12	Φ16	Φ20	Φ25	Ф32
Characteristic bond resistance in u	uncracked concrete	for a workin	ng life of 50	years and	100 years		-		-	
Dry and wet concrete		$\tau_{\rm Rk,ucr}$	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
Installation safety factor		Yinst	[-]		•		1,2			
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	10,0	9,0	9,0	8,5	8,0	8,0	5,0
Installation safety factor		Yinst	[-]				1,4			
Factor for concrete C50/60		ψ	[-]				1			
Factor for influence of sustained	T1: 24°C / 40°C	Ψ ⁰ sus	[-]				0,75			
load for a working life 50 years	T2: 50°C / 80°C	+ sus	[]				0,73			
Concrete cone failure										
		See	Section 18.							
Culitting failung										
Splitting failure										

See Section 18.

Section 20. CHARACTERISTIC RESISTANCE – COMBINED PULL-OUT & CONCRETE CONE FAILURE FOR REBAR – DIAMOND DRILLING METHOD

Characteristic values of resista	nce to tension loa	d of reba	r – diamond d	Irilling mo	ethod					
Combined pullout and concrete c	one failure in uncra	cked cond	crete C20/25							
Diamond core drilling										
Size				Φ8	Φ10	Φ12	Φ16	Φ20	Φ25	Ф32
Characteristic bond resistance in	uncracked concret	e for a wo	rking life of 50	years and	100 years	; 		-		
Dry and wet concrete		τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,0	7,5	7,0	6,0	3,0
Installation safety factor		γinst	[-]				1,2			
Flooded hole		τ _{Rk,ucr}	[N/mm ²]	9,0	8,5	8,0	7,5	7,0	5,5	2,5
Installation safety factor	γinst	[-]				1,4				
	C30/37						1.04			
Factor for uncracked concrete	C40/50	ψ _c	[-]				1,07			
	C50/60						1,09			
Factor for influence of sustained loa for a working life 50 years	d	$\Psi^0{}_{sus}$	[-]				0,77			
Concrete cone failure										
Factor for concrete cone failure		Kucr,N	[-]				11			
Edge distance		C _{cr,N}	[mm]				1,5h _{ef}			
Splitting failure										
Size				Ф8	Φ10	Φ12	Φ16	Ф20	Ф25	Ф32
Edge distance		C _{cr,sp}	[mm]				1,5h _{ef}			
Spacing S _{cr,sp} [mm] 3,0h _{ef}										

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 21. CHARACTERISTIC RESISTANCE – COMBINED PULL-OUT & CONCRETE CONE FAILURE FOR REBAR – DIAMOND DRILLING METHOD FOR WCF-EASF-C WITH INSTALLATION TEMPERATURE < - 10 °C

Characteristic values of resistance to tension load of rebar – diamond drilling method for WCF-EASF-C with installation temperature < - 10 °C

Combined pullout and concrete cone failure in uncracked concrete C20/25

Size				Φ8	Φ10	Φ12	Φ16	Φ20	Φ25	Φ32	
Characteristic bond resistance in	uncracked concret	e for a work	ing life of 50	years and	100 years				•		
Dry and wet concrete		$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,0	7,5	7,0	6,5	5,5	2,5	
Installation safety factor		γinst	[-]		-		1,2	-			
Otwór zalany wodą		$\tau_{\rm Rk,ucr}$	[N/mm ²]	8,5	8,0	7,5	7,0	6,5	5,0	2,0	
Installation safety factor	γinst	[-]	1,4								
	C30/37				1,04						
Factor for uncracked concrete	C40/50	ψα	[-]	<u> </u>							
	C50/60										
Factor for influence of sustained loa for a working life 50 years	ld	$\Psi^0{}_{sus}$	[-]	0,77							
Concrete cone failure											
		Se	e Section 20.								
Splitting failure											
		Se	e Section 20.								

Section 22. RESISTANCE VALUES FOR REINFORCING BARS IN UNCRACKED CONCRETE – 50 YEARS WORKING LIFE -HAMMER DRILLING METHOD

Property						Rebar Dia	meter						
Flopelty	8mm	10mm	12mm	16mm	20mm	25mm	32mm						
Effective Embedment Depth = MIN = 8d	h_{ef}	mm	64	80	96	128	160	200	256				
Design Resistance	N _{Rd}	kN	9.5	13.0	19.0	32.0	47.0	74.0	78.5				
Effective Embedment Depth = 12d	h _{ef}	mm	96	120	144	192	240	300	384				
Design Resistance	N _{Rd}	kN	14.5	19.5	28.5	48.0	71.0	111.0	117.5				
Effective Embedment Depth = 20d	h _{ef}	mm	160	200	240	320	400	500	640				
Design Resistance	N _{Rd}	kN	24.5	33.0	47.5	80.0	118.5	185.0	196.5				

1. Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4 Resistance for steel failure must also be considered - the lowest value controls.

2. Resistance values are for single anchors without close edges or eccentric loading considerations.

3. Tabulated values correspond to the above stated temperature range and installation conditions only.

4. Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal

cycling.

5. The cylinder compressive strength of the concrete (fck), is assumed to be 20 N/mm2.

6. Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 23. CHARACTERISTIC RESISTANCE FOR SEISMIC LOADING CATEGORY C1 – COMBINED PULL-OUT & CONCRETE CONE FAILURE USING THREADED RODS – HAMMER DRILLING , DUSTLESS DRILLING

Seismic performance category C1 - Hamme	er drilling, Du	stless drillir	ng				
Size			M10	M12	M16	M20	M24
Characteristic resistance to pull-out for a working	life of 50 years						
Dry, wet concrete and flooded hole	$\tau_{\rm Rk,C1}$	[N/mm ²]	3,5	3,5	3,5	3,5	3,5
WCF-EASF-C with installation temperature < -10 °C				•		•	
Dry, wet concrete and flooded hole	$\tau_{\rm Rk,C1}$	[N/mm ²]	3,3	3,3	3,3	3,3	3,3
Characteristic resistance to pull-out for a working	life of 100 years	8				•	
Dry, wet concrete and flooded hole	$\tau_{\rm Rk,C1}$	[N/mm ²]	3,0	3,0	3,0	2,2	2,2
WCF-EASF-C with installation temperature < -10 °C				•		•	
Dry, wet concrete and flooded hole	$\tau_{\rm Rk,C1}$	[N/mm ²]	2,8	2,8	2,8	2,1	2,1
Installation safety factor – Dry and wet concrete	γinst	[-]			1,2		
Installation safety factor – Flooded hole	γinst	[-]			1,4		

Note: Rebars are not qualified for seismic design

Section 24. CHARACTERISTIC RESISTANCE FOR SEISMIC LOADING CATEGORY C1 – THREADED RODS – CHARACTERISTIC VALUES FOR STEEL FAILURE (TENSION)- HAMMER DRILLING , DUSTLESS DRILLING

Seismic performance category C1 - Hamm	er drilling, Dus	tless drill	ing				
Size			M10	M12	M16	M20	M24
Tension load							
Steel failure							
Characteristic resistance KPG 4.6	N _{Rk,s,eq}	[kN]	23	34	63	98	141
Partial safety factor	Yms	[-]			2,00		
Characteristic resistance KPG 5.8	N _{Rk,s,eq}	[kN]	29	42	79	123	177
Partial safety factor	Yms	[-]			1,50		
Characteristic resistance KPG 8.8	N _{Rk,s,eq}	[kN]	46	67	126	196	282
Partial safety factor	Yms	[-]			1,50		
Characteristic resistance KPG 10.9	N _{Rk,s,eq}	[kN]	58	84	157	245	353
Partial safety factor	Yms	[-]			1,33		
Characteristic resistance KPG A2-70, A4-70	N _{Rk,s,eq}	[kN]	41	59	110	172	247
Partial safety factor	Yms	[-]			1,87		
Characteristic resistance KPG A4-80	N _{Rk,s,eq}	[kN]	46	67	126	196	282
Partial safety factor	Yms	[-]			1,60		
Characteristic resistance KPG HCR	N _{Rk,s,eq}	[kN]	41	59	110	172	247
Partial safety factor	Ϋ́Ms	[-]			1,50		
Characteristic resistance KPG UHCR	N _{Rk,s,eq}	[kN]	41	59	110	172	247
Partial safety factor	Yms	[-]			1,87		

Section 25. CHARACTERISTIC RESISTANCE FOR SEISMIC LOADING CATEGORY C1 – THREADED RODS – CHARACTERISTIC VALUES FOR STEEL FAILURE (SHEAR-WITHOUT LEVER ARM) -HAMMER DRILLING , DUSTLESS DRILLING

Seismic performance category C1 - Hamm	<u>ner drilling, Dus</u>	tless drill	ing				
Size			M10	M12	M16	M20	M24
Shear load							
Steel failure without lever arm							
Characteristic resistance KPG 4.6	V _{Rk,s,eq}	[kN]	7	10	23	30	40
Partial safety factor	Ϋ́мs	[-]			1,67		
Characteristic resistance KPG 5.8	V _{Rk,s,eq}	[kN]	9	13	28	38	51
Partial safety factor	Ϋ́мs	[-]			1,25		
Characteristic resistance KPG 8.8	V _{Rk,s,eq}	[kN]	14	21	45	61	81
Partial safety factor	Ϋ́мs	[-]			1,25		
Characteristic resistance KPG 10.9	V _{Rk,s,eq}	[kN]	18	26	56	76	101
Partial safety factor	Ϋ́мs	[-]			1,50		
Characteristic resistance KPG A2-70, A4-70	V _{Rk,s,eq}	[kN]	12	18	39	53	71
Partial safety factor	Ϋ́мs	[-]			1,56		
Characteristic resistance KPG A4-80	V _{Rk,s,eq}	[kN]	14	21	45	61	81
Partial safety factor	Ϋ́мs	[-]			1,33		
Characteristic resistance KPG HCR	V _{Rk,s,eq}	[kN]	12	18	39	53	71
Partial safety factor	Yмs	[-]			1,25		
Characteristic resistance KPG UHCR	V _{Rk,s,eq}	[kN]	12	18	39	53	71
Partial safety factor	Yмs	[-]			1,56		
Factor for annular gap	α _{ααρ}	[-]			0,50		

Note: Rebars are not qualified for seismic design

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 26. RESISTANCE VALUES FOR THREADED ROD IN SEISMIC CATEGORY C1 - 50 YEARS WORKING LIFE -Combined Pull-out & Concrete Cone Failure and Concrete Cone Failure – HAMMER DRILLING METHOD

Resistance Values for Threaded Rod in Seismic Category C1 - 50 years working life

Combined Pullout & Concrete Cone Failure and Concrete Cone Failure

Temperature Range: -40°C to 80°C									
Dronorty		Unit	Anchor Diameter						
Property		Unit	M10	M12	M16	M20	M24		
Effective Embedment Depth = MIN = 8d	h _{ef}	mm	80	96	128	160	192		
Design Resistance	N _{Rd}	kN	4,5	7,0	12,5	19,5	29,0		
Effective Embedment Depth = 12d	h _{ef}	mm	120	144	192	240	288		
Design Resistance	N _{Rd}	kN	7,0	10,5	18,5	29,0	42,0		
Effective Embedment Depth = STD	h _{ef}	mm	90	110	128	170	210		
Design Resistance	N _{Rd}	kN	5,0	8,0	12,5	20,5	30,5		
Effective Embedment Depth = MAX = 20d	h _{ef}	mm	200	240	320	400	480		
Design Resistance	N _{Rd}	kN	12,0	17,5	31,0	48,5	70,0		

1. Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for steel failure must

also be considered - the lowest value controls.

2. Resistance values are for single anchors without close edges or eccentric loading considerations.

3. Tabulated values correspond to the above stated temperature range and installation conditions only.

4. Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cvclina.

5. The cylinder compressive strength of the concrete (fck), is assumed to be 20 N/mm2.

6. Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Section 27. POST INSTALLED REBAR – INSTALLATION PARAMETERS

Post Installed	Rebar - Insta	llation Parameters				
Rel	bar					
Diameter (mm)	f _{yk} (N/mm²)	Drill hole Diameter (mm)	Diameter of Cleaning Brush (mm)	Min. Anchorage Length (mm)	Min. Lap/Splice Length (mm)	Max. Embedment Depth (mm)
8	500	12 (10)	14	113	200	400
10	500	14 (12)	14	141	215	500
12	500	16	19	170	260	600
14	500	18	22	198	300	700
16	500	20	22	226	345	800
20	500	25	29	283	430	1000
25	500	32	40	354	535	1000

Note - Installation parameters are based on C20/25 concrete

Minimum Anchorage Length:

 $I_{bPIR} = \alpha_{lb} \bullet \ell_{b,min}$

 α_{lb} = amplification factor for minimum anchorage length

 $\ell_{b,min}$ = minimum anchorage length of cast-in rebar according to EN 1992-1-1, eq. 8.6

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 28. DESIGN BOND STRENGTH FOR 50 YEARS WORKING LIFE

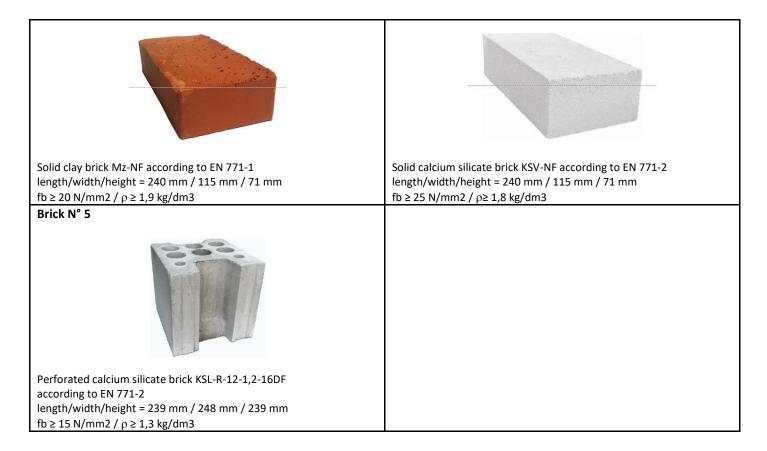
Design Bond Strength for 50 years working life

		Concrete Class										
Rebar Diameter (mm)	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60			
8	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30			
10	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30			
12	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30			
14	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30			
16	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30			
20	1.60	2.00	2.30	2.70	3.00	3.40		3.70				
25	1.60	2.00	2.30	2.70			3.00					

Note:

Tabulated values are valid for good bond conditions according to EN 1992-1-1. For all other bond conditions multiply the values by 0.7. Values for bond strengths have had reduction factors applied.

Amplification	Factor For Embedment De	pth								
Rebar	Amplification Factor	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8										
10										
12										
14	α_{lb}					1				
16	15									
20										
25										


Section 29. TYPES AND DIMENSIONS OF BLOCK AND BRICKS

Brick N° 1	Brick N° 2
Hollow clay brick Hueco Doble according to EN 771-1 length/width/height = 245 mm / 110 mm / 88 mm fb \ge 2,5 N/mm ² / ρ \ge 0,74 kg/dm ³	Hollow clay brick Porotherm P+W according to EN 771-1 length/width/height = 373 mm/250 mm/238 mm fb \geq 12 N/mm2 / ρ \geq 0,9 kg/dm3
Brick N° 3	Brick N° 4

Wkręt-met KLIMAS

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Brick N° Strength class acc. to EN 771-4 L/W/H fb ρ (kg/dm³) (kg/dm³) 000000000000000000000000000000000000									
Brick N°	Strength class acc. to EN 771-4		-						
N8 C	Autoplayed carated caparate AAC2	· · /							
N° 6	Autoclaved aerated concrete AAC2	599/375/249	≥ 2,0	≥ 0,35					
N° 7	Autoclaved aerated concrete AAC3	599/375/249	≥ 3,0	≥ 0,40					
N°8	Autoclaved aerated concrete AAC4	599/375/249	≥ 4,0	≥ 0,50					
N° 9	Autoclaved aerated concrete AAC5	599/375/249	≥ 5,0	≥ 0,60					
N° 10	Autoclaved aerated concrete AAC6	499/240/250	≥ 6,0	≥ 0,65					

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 30. INSTALLATION PARAMETERS IN SOLID OR HOLLOW MASONRY WITH SLEEVE

Anchor type							
Size			M8	M10	M	12	M16
Sieve sleeve	ls	[mm]	85	85	85		85
Sleve sleeve	ds	[mm]	16	16	16	20	20
Nominal drill hole diameter	d_0	[mm]	16	16	16	20	20
Diameter of cleaning brush	db	[mm]	20 ^{±1}	20 ^{±1}	20 ^{±1}	22 ^{±1}	22 ^{±1}
Depth of the drill hole	ho	[mm]			90		
Effective anchorage depth	h _{ef}	[mm]			85		
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	1	4	18
Torque moment	[Nm]			2			

Section 31. EDGE DISTANCES AND SPACING IN SOLID OR HOLLOW MASONRY WITH SLEEVE

			Anchor	rod					
		M8, M10, M12	2)	M12 ³⁾ , M16					
Base material ¹⁾	Ccr = Cmin	Scr II = Smin II	Sar⊥ = Smin⊥	G _{cr} = G _{min}	Sar = Smin =	S _{cr} ⊥ = S _{min} ⊥			
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
Brick N° 1	100	245	110	120	245	110			
Brick N° 2	100	373	238	120	373	238			
Brick N° 3	128	255	255	128	255	255			
Brick N° 4	128	255	255	125	255	255			
Brick N° 5	100	239	248	120	239	248			

²⁾ M12 with sleeve TSN 16/85

 $^{\rm 3)}$ M12 with sleeve TSN 20/85

Section 32. INSTALLATION PARAMETERS IN SOLID MASONRY WITHOUT SLEEVE

Anchor type				Anchor ro	od without	sleeve		
Size			M6	M8	M10	M12	M16	
Nominal drill hole diameter	do	[mm]	8	10	12	14	18	
Diameter of cleaning brush	db	[mm]	9 ^{±1}	14 ^{±1}	14 ^{±1}	14 ^{±1}	20 ^{±1}	
Depth of the drill hole	ho	[mm]	80	90				
Effective anchorage depth	h _{ef}	[mm]	80		90			
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	
Torque moment	T _{inst} ≤	[Nm]		2				

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 33. EDGE DISTANCES AND SPACING IN SOLID MASONRY WITHOUT SLEEVE

			Anchor	rod		
		M6				
Base material ¹⁾	C _{cr} = C _{min}	S _{cr} II = S _{min} II	S _{cr} ⊥ = S _{min} ⊥	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Brick N° 3	120	240	240	135	270	270
Brick N° 3	120	240	240	135	270	270

Section 34. INSTALLATION PARAMETERS IN AUTOCLAVED AERATED CONCRETE

Base material			Brick No. 6 - 10				
Anchor type			Anchor rod without sleeve				
Size	M6 M8 M10 M12						
Nominal drill hole diameter	d₀	[mm]	8	10	12	14	18
Diameter of cleaning brush	d⊳	[mm]	9 ^{±1}	14 ^{±1}	14 ^{±1}	20 ^{±1}	20 ^{±1}
Depth of the drill hole	h₀	[mm]		80		95	105
Effective anchorage depth	h _{ef}	[mm]		75		90	100
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18
Torque moment	T _{inst} ≤	[Nm]	2				

Section 35. EDGE DISTANCES AND SPACING IN AUTOCLAVED AERATED CONCRETE

				Anchor rod					
		M6, M8, M10			M12		M16		
Base material ¹⁾	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	Ccr = Cmin	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Brick N° 6	113	225	225	135	270	270	150	300	300
Brick N° 7	113	225	225	135	270	270	150	300	300
Brick N° 8	113	225	225	135	270	270	150	300	300
Brick N° 9	113	225	225	135	270	270	150	300	300
Brick N° 10	113	225	225	135	270	270	150	300	300

Section 36. CHARACTERISTIC RESISTANCE UNDER TENSION AND SHEAR LOADING

Base material	Anchor rods with sleeve N _{Rk} =V _{Rk} [kN] ¹⁾						ods witho _{Rk} =V _{Rk} [kN]			
material	M8	M10	M12	M12	M16	M6 M8 M10 M12				M16
Sleeve	16/85	16/85	16/85	20/85	20/85					
Brick N° 1	0,9	1,5	1,5	1,5	1,5					
Brick N° 2	2,0	2,0	2,0	2,5	2,5					
Brick N° 3	3,0	3,0	3,0	3,0	3,0	3,5	4,0	5,0	3,5	4,5
Brick N° 4	3,0	3,0	3,0	3,0	3,0	6,0	7,0	8,0	5,5	8,0
Brick N° 5	2.0	2.0	2.0	2.5	2.5					

¹⁾ For design according TR054 : $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$; $N_{Rk,pb}$ according to TR 054

For V_{Rk,s} see Section 37 ; Calculation of V_{Rk,pb} i V_{Rk,c} according to TR 054

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 37. CHARACTERISTIC RESISTANCE UNDER SHEAR LOADING – STEEL FAILURE

Size			M6	M8	M10	M12	M16	Partial safety factor γ _{Ms}
Characteristic shear resistance								
KPG 5.8	V _{Rk,s}	[kN]	5	9	15	21	39	1,25
KPG 8.8	V _{Rk,s}	[kN]	8	15	23	34	63	1,25
KPG 10.9	V _{Rk,s}	[kN]	10	18	29	42	79	1,50
KPG A2-70, KPG A4-70	V _{Rk,s}	[kN]	7	13	20	30	55	1,56
KPG A4-80	V _{Rk,s}	[kN]	8	15	23	34	63	1,33
KPG HCR	V _{Rk,s}	[kN]	7	13	20	30	55	1,25
KPG UHCR	V _{Rk,s}	[kN]	7	13	20	30	55	1,56
Characteristic bending moment								
KPG 5.8	M _{Rk,s}	[Nm]	8	19	37	66	166	1,25
KPG 8.8	M _{Rk,s}	[Nm]	12	30	60	105	266	1,25
KPG 10.9	M _{Rk,s}	[Nm]	15	37	75	131	333	1,50
KPG A2-70, KPG A4-70	M _{Rk,s}	[Nm]	11	26	52	92	233	1,56
KPG A4-80	M _{Rk,s}	[Nm]	12	30	60	105	266	1,33
KPG HCR	M _{Rk,s}	[Nm]	11	26	52	92	233	1,25
KPG UHCR	M _{Rk,s}	[Nm]	11	26	52	92	233	1,56

Section 38. DISPLACEMENTS UNDER TENSION AND SHEAR LOAD

			With s	leeve			Without	sleeve	
Base material	F [kN]	δ _{Ν0}	δ _{N∞}	δνο	δ _{N∞}	δ _{Ν0}	δ _{N∞}	δνο	δ _{N∞}
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Hollow clay brick	N _{Rk} / (1,4 · γ _M)	0,5	1,0	1,0 ¹⁾	1,5 ¹⁾				
Solid clay brick	N _{Rk} / (1,4 · γ _M)	0,06	0,12	0,71)	1,0 ¹⁾	0,3	0,6	0,7	1,1
Solid calcium silicate brick	N _{Rk} / (1,4 · γ _M)	0,12	0,24	0,9 ¹⁾	1,4 ¹⁾	0,3	0,5	0,8	1,3
Perforated calcium silicate brick	N _{Rk} / (1,4 · γ _M)	0,1	0,2	0,9 ¹⁾	1,4 ¹⁾				

1) the hole gap between bolt and fixture shall be considered additionally

Section 39. β – FACTORS FOR JOB SITE TESTS ACCORDING TO TR053

Brick N°	N° 1	N° 2	N° 3	N° 4	N°5
β- factor	0,78	0,83	0,85	0,85	0,85

Section 40. CHARACTERISTIC RESISTANCE UNDER TENSION AND SHEAR LOADING WCF-EASF-C WITH INSTALLATION TEMPERATURE < -10°C

Base	material N _{Rk} =V _{Rk} [KN] ''						ods witho _{Rk} =V _{Rk} [kN]	without sleeve _{Rk} [kN] ¹⁾		
material	M8	M10	M12	M12	M16	M6 M8 M10 M12				M16
Sleeve	16/85	16/85	16/85	20/85	20/85					
Brick N° 1	0,9	1,5	1,5	1,5	1,5					
Brick N° 2	2,0	2,0	2,0	2,5	2,5					
Brick N° 3	3,0	3,0	3,0	3,0	3,0	3,0	4,0	5,0	3,5	4,5
Brick N° 4	3,0	3,0	3,0	3,0	3,0	6,0	7,0	7,5	5,5	7,5
Brick N° 5	2,0	2,0	2,0	2,5	2,5					

¹⁾ For design according TR054 : $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$; $N_{Rk,pb}$ according to TR 054

For V_{Rk,s} see Section 41 ; Calculation of V_{Rk,pb} i V_{Rk,c} according to TR 054

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 41. CHARACTERISTIC RESISTANCE UNDER SHEAR LOADING – steel failure – WCF-EASF-C WITH INSTALLATION TEMPERATURE < -10°C

Size	M6	M8	M10	M12	M16	Partial safety factor γ _{Ms}
See Secti	ion 37					

Section 42. DISPLACEMENTS UNDER TENSION AND SHEAR LOAD – WCF-EASF-C WITH INSTALLATION TEMPERATURE < -10°C

			With s	leeve			Without	sleeve		
Base material	F [kN]	δ _{Ν0}	δ _{N∞}	δνο	δ _{N∞}	δ _{N0}	δ _{N∞}	δνο	δ _{N∞}	
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
See Section 38										

Section 43. β – FACTORS FOR JOB SITE TESTS ACCORDING TO TR053 – WCF-EASF-C WITH INSTALLATION TEMPERATURE < -10°C

Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5
β- factor	0,74	0,79	0,81	0,81	0,81

Section 44. CHARACTERISTIC RESISTANCE UNDER TENSION AND SHEAR LOADING (AUTOCLAVED AERATED CONCRETE)

Page motorial		Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾											
Base material		Use conditions d/d Use conditions w/d i w/w											
	M6	M8	M10 M12 M16 M6 M8 M10 M12						M16				
Brick N° 6	0,9	0,9	0,9	0,9	2,0	0,75	0,75	0,75	0,9	1,5			
Brick N° 7	0,9	1,5	1,5	2,0	3,0	0,9	1,2	1,2	1,5	2,5			
Brick N° 8	1,2	2,5	2,5	3,0	4,0	0,9	2,0	2,0	2,5	3,0			
Brick N° 9	1,5	3,0	3,0	4,0	5,0	1,2	2,5	2,5	3,5	4,0			
Brick N° 10	1,5	4,0	4,0	5,0	6,0	1,2	3,0	3,0	4,0	4,5			

¹⁾ For design according TR054 : N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s} ; N_{Rk,pb} according to TR 054 For V_{Rk,s} see Section 45 ; Calculation of V_{Rk,pb} i V_{Rk,c} according to TR 054

Section 45. CHARACTERISTIC RESISTANCE UNDER SHEAR LOADING – steel failure (AUTOCLAVED AERATED CONCRETE)

Size		M6	M8	M10	M12	M16	Partial safety factor γ _{Ms}	
Characteristic shear resistance								
KPG 4.6	V _{Rk,s}	[kN]	4	7	12	17	31	1,67
KPG 5.8	V _{Rk,s}	[kN]	5	9	15	21	39	1,25
KPG 8.8	V _{Rk,s}	[kN]	8	15	23	34	63	1,25
KPG 10.9	V _{Rk,s}	[kN]	10	18	29	42	79	1,50
KPG A2-70, KPG A4-70	V _{Rk,s}	[kN]	7	13	20	30	55	1,56
KPG A4-80	V _{Rk,s}	[kN]	8	15	23	34	63	1,33
KPG HCR	V _{Rk,s}	[kN]	7	13	20	30	55	1,25
KPG UHCR	V _{Rk,s}	[kN]	7	13	20	30	55	1,56
Characteristic bending moment	•						•	
KPG 4.6	M _{Rk,s}	[Nm]	6	15	30	52	133	1,67
KPG 5.8	M _{Rk,s}	[Nm]	8	19	37	66	166	1,25
KPG 8.8	M _{Rk,s}	[Nm]	12	30	60	105	266	1,25
KPG 10.9	M _{Rk,s}	[Nm]	15	37	75	131	333	1,50
KPG A2-70, KPG A4-70	M _{Rk,s}	[Nm]	11	26	52	92	233	1,56
KPG A4-80	M _{Rk,s}	[Nm]	12	30	60	105	266	1,33
KPG HCR	M _{Rk,s}	[Nm]	11	26	52	92	233	1,25
KPG UHCR	M _{Rk,s}	[Nm]	11	26	52	92	233	1,56

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Section 46. DISPLACEMENTS UNDER TENSION AND SHEAR LOAD (AUTOCLAVED AERATED CONCRETE)

Size			M6	M8	M10	M12	M16		
Load	F	[kN]		N _{Rk} / (1,4 · γ _M)					
	δ _{N0}	[mm]	0,27	0,24	0,32	0,39	0,96		
AAC2	δ _{N∞}	[mm]	0,54	0,49	0,64	0,78	1,92		
AAC2	δνο	[mm]	0,25	0,42	0,16	0,18	0,31		
	δ _{V∞}	[mm]	0,38	0,62	0,23	0,27	0,46		
	δ _{N0}	[mm]	0,64	0,24	0,32	0,39	0,96		
AAC4	δ _{N∞}	[mm]	1,28	0,49	0,64	0,78	1,92		
AAC4	δνο	[mm]	0,32	0,73	0,54	0,29	0,32		
	δν∞	[mm]	0,47	1,09	0,81	0,44	0,48		
	δ _{N0}	[mm]	0,64	0,06	0,09	0,10	0,05		
	δ _{N∞}	[mm]	1,28	0,12	0,18	0,21	0,11		
AAC6	δνο	[mm]	0,32	0,73	0,54	0,29	0,32		
	δν∞	[mm]	0,47	1,09	0,81	0,44	0,48		

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Section 47. β – FACTORS FOR JOB SITE TESTS ACCORDING TO TR053 (AUTOCLAVED AERATED CONCRETE)

Brick N°	N° 6	N° 7	N°8	N°9	N° 10
β – factor – Use conditions d/d	0,98	0,98	0,98	0,98	0,98
β – factor – Use conditions d/w and w/w	0,78	0,78	0,78	0,78	0,78

Section 48. CHARACTERISTIC RESISTANCE UNDER TENSION AND SHEAR LOADING(AUTOCLAVED AERATED CONCRETE)— WCF-EASF-C WITH INSTALLATION TEMPERATURE < -10°C

Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾										
Material pouloza		Use conditions d/d Use conditions w/d and w/w								
	M6	M6 M8 M10 M12 M16 M6 M8 M10								M16
Brick N° 6	0,75	0,9	0,9	0,9	2,0	0,6	0,75	0,75	0,9	1,5
Brick N° 7	0,9	1,5	1,5	2,0	3,0	0,75	1,2	1,2	1,5	2,0
Brick N° 8	1,2	2,0	2,5	3,0	3,5	0,9	1,5	2,0	2,5	3,0
Brick N° 9	1,5 3,0 3,0 4,0 4,5 0,9 2,5 2,5								3,0	3,5
Brick N° 10	1,5	3,5	4,0	5,0	5,5	1,2	3,0	3,0	4,0	4,5

¹⁾ For design according TR054 : $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$; $N_{Rk,pb}$ according to TR 054

For $V_{Rk,s}$ see Section 45 ; Calculation of $V_{Rk,pb}$ i $V_{Rk,c}$ according to TR 054

Section 49. CHARACTERISTIC RESISTANCE UNDER SHEAR LOADING – steel failure (AUTOCLAVED AERATED CONCRETE) – WCF-EASF-C WITH INSTALLATION TEMPERATURE < -10°C

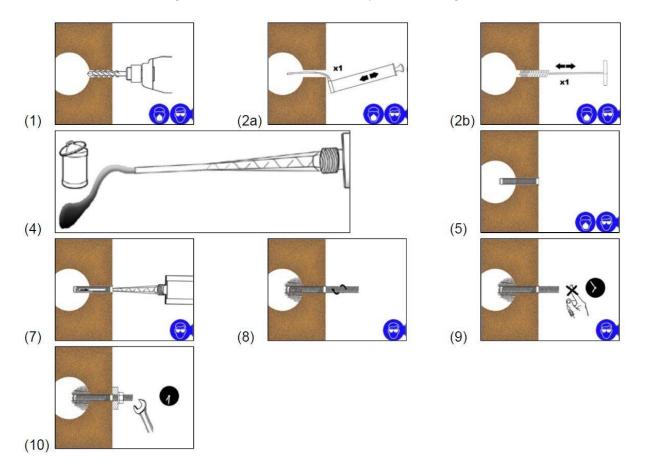
Size	M6	M8	M10	M12	M16	Partial safety factor γ _{Ms}
See Section	on 45.					

Section 50. DISPLACEMENTS UNDER TENSION AND SHEAR LOAD (AUTOCLAVED AERATED CONCRETE) – WCF-EASF-C WITH INSTALLATION TEMPERATURE < -10°C

Size					M6	M8	M10	M12	M16
			See Section	า 46.					

¹⁾ the hole gap between bolt and fixture shall be considered additionally

PRODUCT DATA SHEET – WCF-EASF/ WCF-EASF-E/ WCF-EASF-C


Section 51. β – FACTORS FOR JOB SITE TESTS ACCORDING TO TR053 (AUTOCLAVED AERATED CONCRETE) – WCF-EASF-C WITH INSTALLATION TEMPERATURE < -10°C

Brick N°	N° 6	N° 7	N°8	N°9	N° 10
β – factor – Use conditions d/d	0,95	0,95	0,95	0,95	0,95
β – factor – Use conditions d/w and w/w	0,74	0,74	0,74	0,74	0,74

Section 52. HOLLOW MASONRY INSTALLATION METHOD

Hollow Masonry Installation Method

- 1. Drill the hole to the correct diameter and depth . This should be done with rotary percussion drilling machine to reduce spalling.
- 2. Thoroughly clean the hole in the following sequence using the Brush with the required extensions and a source of clean compressed air. For holes of 400 mm or less deep , a Blow Pump may be used: Brush Clean x1. Blow clean x1.
- 3. Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mount of the cartridge. Insert the cartridge into a good quality applicator.
- 4. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.
- 5. Select the appropriate perforated sleeve and insert into the hole.
- 6. Insert the mixer nozzle to the bottom of the perforated sleeve, withdraw 2-3 mm then begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there is no air voids as the mixer nozzle is withdrawn. Fill the perforated sleeve and withdraw the nozzle completely.
- 7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.
- 8. Any excess resin will be expelled from the hole evenly around the steel element showing that the hole is full. This excess resin should be removed from around the mount of the hole before it sets.
- 9. Leave the anchor to cure. Do not disturb the anchor until the appropriate loading time , has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. Do not overtighten.

Note : For solid masonry applications, please refer to 'Solid Substrate Installation Method'.

Section 53. IMPORTANT NOTES

KLIMAS Sp. z o.o. ul. W. Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów tel. +48 34 377 71 00, fax. +48 34 328 01 73 Infolinia: 801 477 477, <u>www.wkret-met.com</u>

PRODUCT DATA SHEET - WCF-EASF/ WCF-EASF-E/ WCF-EASF-C

Important Notes:

Use in Porous Substrates

This bonded anchor is not intended for use as a cosmetic or decorative product. When anchoring into porous or reconstituted stone it is recommended that technical assistance is sought. Due to the nature of the product, migration of the monomer in the resin may cause staining in certain materials. If you are still uncertain, it is advisable to test the resin by applying it in a small, discrete area and testing before using the resin on the project.

Important Note

Whilst all reasonable care is taken in compiling technical data on the Company's products, all recommendations or suggestions regarding the use of such products are made without guarantee, since the conditions of use are beyond the control of the Company. It is the customer's responsibility to satisfy himself that each product is fit for the purpose for which he intends to use it, that the actual conditions of use are suitable and that, in the light of our continual research and development programme the information relating to each product has not been superseded.