

KLIMAS Sp. z o.o. ul. Wincentego Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów tel. +48 34 3777 100, fax +48 34 328 01 73

DECLARACTION OF PERFORMANCE No EASF/20/0618

1. Unique identification code of the product-type:

WCF-EASF,WCF-EASF-C, WCF-EASF-E

Intended use/es:	
Product	Intended use
Metal injection anchors for use in masonry	Post-installed fastening in masonry unit, see appendix , especially Annexes B1 to B8
Manufacturer:	KLIMAS Sp. z o.o. ul. Wincentego Witosa 135/137 Kuźnica Kiedrzyńska 42-233 Mykanów
Authorised representative:	not applicable
System/s of AVCP:	System 1
European Assessment Document:	 a) EAD 330076-01-0604 b) European Technical Assessments – ETA-20/0618 of 01/12/2023 c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p. d) Identification number of notified body– 1020
European Assessment Document: Declared performance/s:	 b) European Technical Assessments – ETA-20/0618 of 01/12/2023 c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p.
	 b) European Technical Assessments – ETA-20/0618 of 01/12/2023 c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p.
Declared performance/s:	 b) European Technical Assessments – ETA-20/0618 of 01/12/2023 c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p.
Declared performance/s: Mechanical resistance and stability (BWR 1)	 b) European Technical Assessments – ETA-20/0618 of 01/12/2023 c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p. d) Identification number of notified body– 1020
Declared performance/s: Mechanical resistance and stability (BWR 1) Essential characteristic	 b) European Technical Assessments – ETA-20/0618 of 01/12/2023 c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p. d) Identification number of notified body– 1020
Declared performance/s: Mechanical resistance and stability (BWR 1) Essential characteristic Reduction factor for job site tests (β – factor)	 b) European Technical Assessments – ETA-20/0618 of 01/12/2023 c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p. d) Identification number of notified body– 1020 Performance See appendix, especially Annexes C1 to C4
Declared performance/s: Mechanical resistance and stability (BWR 1) Essential characteristic Reduction factor for job site tests (β – factor) Characteristic resistance	b) European Technical Assessments – ETA-20/0618 of 01/12/2023 c) TECHNICKY A ZKUSEBNI USTAV STAVEBNI PRAHA s.p. d) Identification number of notified body– 1020 Performance See appendix, especially Annexes C1 to C4 See appendix, especially Annexes C1 to C4

Essential characteristic		Performance		
Reaction to fire		Anchorages satisfy requirements for Class A1		
Appropriate Technical Decumentation and/or	not onnligable			

8. Appropriate Technical Documentation and/or Specific Technical Documentation:

not applicable

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Kuźnica Kiedrzyńska 01.12.2023r. (place and date of issue)

Adam Szczepanowski Kierownik działu technicznego 0099 Adam Szczepanowski - 418

(signature)

This declaration replaces the declaration from 07.04.2022.

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail. The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

1. Technical description of the product

The WCF-EASF, WCF-EASF-C (faster curing time) and WCF-EASF-E (extended curing time) for masonry is a bonded anchor consisting of a cartridge with injection mortar, a plastic sieve sleeve and an anchor rod with a hexagon nut and a washer. The steel elements are made of galvanized steel or stainless steel.

The sieve sleeve is pushed into a drilled hole and filled with injection mortar before the anchor rod is placed in the sieve sleeve. The steel element is anchored via the bond between metal part, injection mortar and masonry.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance				
Reduction factor for job site tests (β – factor)	See Annex C 1 to C 4				
Characteristic resistance	See Annex C 1 to C 4				
Edge distances and spacing	See Annex B 6, B 7				
Displacements	See Annex C 1 to C 4				
Durability	See Annex A 3				

3.2 Safety in case of fire (BWR 2)

Essential characte	ristic	Performance
Reaction to fire		Anchorages satisfy requirements for Class A1

3.3 Hygiene, health and environment (BWR 3)

No performance determined.

3.4 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

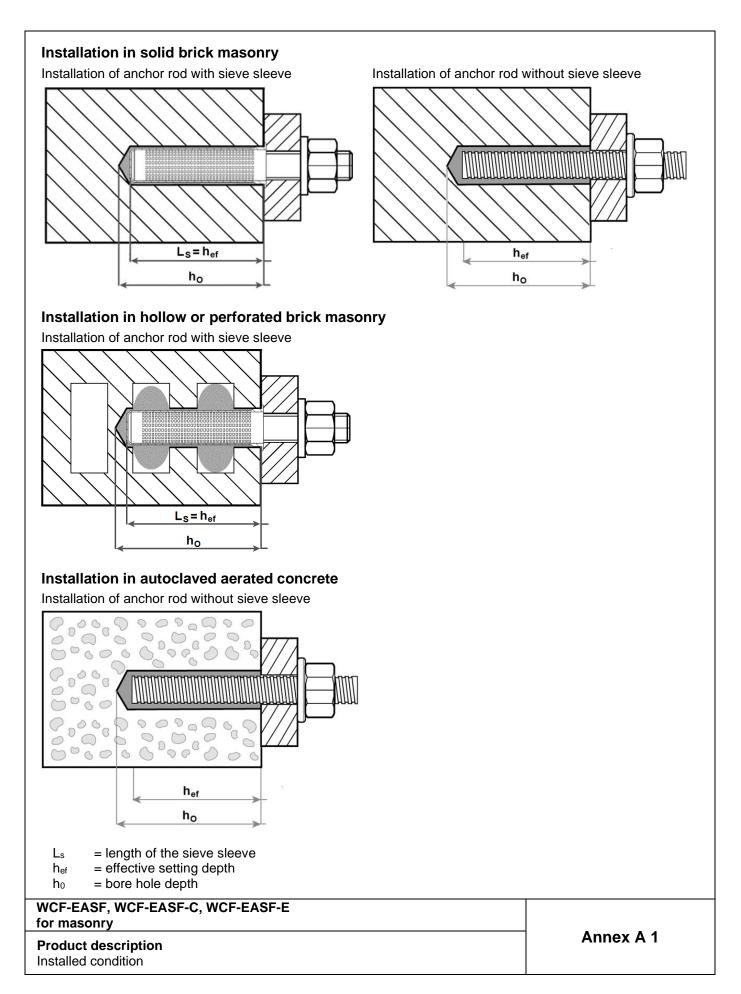
According to the Decision 97/177/EC of the European Commission¹, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Injection anchors for	For fixing and/or supporting to		
use in masonry	masonry, structural elements (which contributes to the stability	-	1
	of the works) or heavy units		

¹ Official Journal of the European Communities L 073 of 14.03.1997

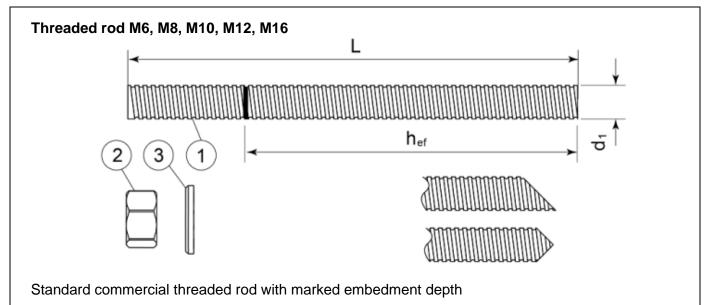
5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

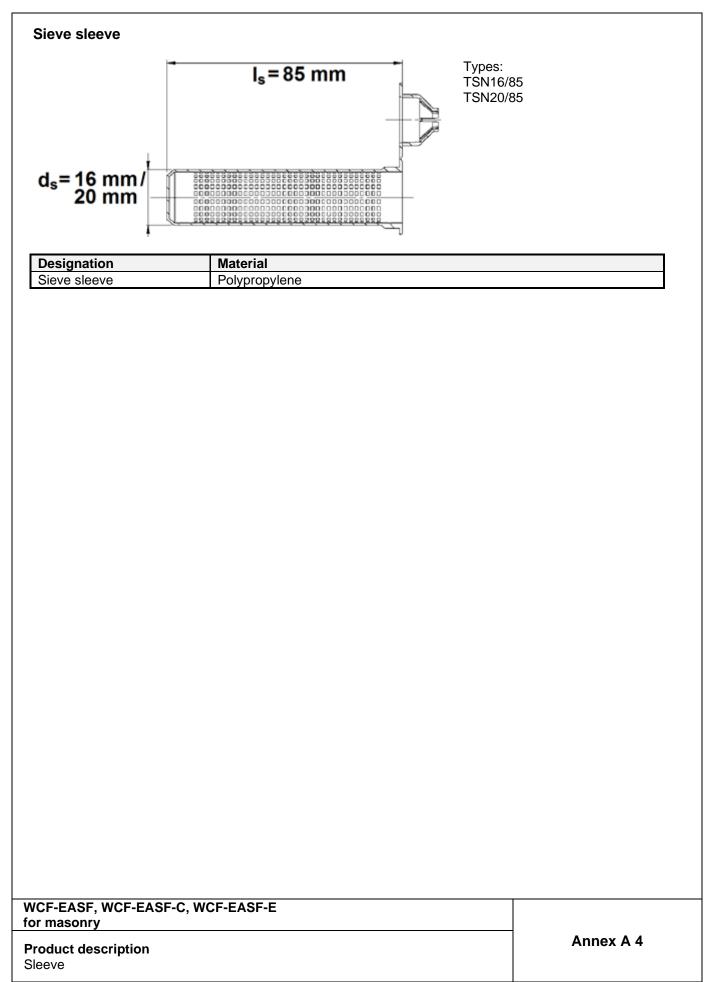

Issued in Prague on 01.12.2023

By

Ing. Jiří Studnička, Ph.D. Head of the Technical Assessment Body


² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

APPENDIX 3 of 18


Coaxial cartri WCF-EASF, Wo	dge CF-EASF-C, WCF-EASF-E	150 ml 380 ml 400 ml 410 ml		
Side by side (WCF-EASF, W	cartridge CF-EASF-C, WCF-EASF-E	350 ml 825 ml		
Two part foil WCF-EASF, Wo	in a single piston compo CF-EASF-C, WCF-EASF-E	nent cartridg 150 ml 170 ml 300 ml 550 ml 850 ml	e	
	e mortar cartridges rk of the producer, Trade n ie	ame, Charge	code number, Storag	e life, Curing and
Mixing nozzl	9			
-				
NN				
WN				
EN			0	
SN				
LN				
KN for 850				
WCF-EASF, WC for masonry	CF-EASF-C, WCF-EASF-E			
Product descri				Annex A 2

APPENDIX 5 of 18

Part		Material				
	l, zinc plated ≥ 5 μm acc. to EN IS					
	I, Hot-dip galvanized \geq 40 µm acc.		0684 or			
Steel, zinc diffusion coating ≥ 15 μm acc. to EN 13811 or Steel, zinc flake ≥ 8 μm acc. to EN ISO 2178:2016						
Steel	$\frac{1}{2}$ $\frac{1}$	Steel, EN 10087 or EN 1026	n			
1	Anchor rod KPG 4.6 ¹⁾ , KPG 5.8, KPG 8.8, KPG 10.9 ²⁾ EN ISO 898-1					
2	Hexagon nut EN ISO 4032	According to threaded rod, E	N 20898-2			
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod				
Stain	lless steel					
1	Anchor rod	KPG A2-70, KPG A4-70, KP EN ISO 3506	G A4-80			
2	Hexagon nut EN ISO 4032	According to threaded rod				
Washer 3 EN ISO 887, EN ISO 7089, According to threaded rod EN ISO 7093 or EN ISO 7094						
High	corrosion resistant steel					
1	Anchor rod	KPG HCR, KPG UHCR EN 10088-1				
2	Hexagon nut EN ISO 4032	According to threaded rod				
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod				
	for use in Autoclaved aerated conc					
⁾ Galv	ranized rod of high strength are sens	sitive to hydrogen induced brittle	failure			
CF-EA r maso	SF, WCF-EASF-C, WCF-EASF-E					
	description		Annex A 3			

Threaded rod and materials

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads

Base materials

- Solid brick masonry (Use category b), according to Annex B2.
- Hollow brick masonry (Use category c), according to Annex B2.
- Autoclaved aerated concrete (Masonry group d), according to Annex B3.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry, hollow or perforated masonry or autoclaved aerated concrete the characteristic resistance of the anchorages may be determined by job site tests according to EOTA Technical Report TR 053 and under consideration of the β-factor to Annex C1, Table C4 or Annex C 2, Table C8.

Note: The characteristic resistance for solid bricks are also valid for larger brick sizes and larger compressive strength of the masonry unit.

Temperature range:

- Ta: -40°C to +40°C (max. short. term temperature +40°C and max. long term temperature +24°C)
- T_b: -40°C to +80°C (max. short. term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry, internal conditions
 - (zinc coated steel, stainless steel, high corrosion resistance steel)
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel)
- (X3) Structures subject to external atmospheric exposure or exposure in permanently damp internal conditions or particularly aggressive conditions such as permanent or alternate immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulfurization plants or road tunnels, where de-icing materials are used) (high corrosion resistant steel)

Use categories in respect of installation and use:

- Category d/d Installation and use in structures subject to dry, internal conditions
- Category w/d Installation in dry or wet substrate and use in structures subject to dry, internal conditions
- Category w/w Installation and use in structures subject to dry or wet environmental conditions

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorage are designed in accordance with the EOTA Technical Report TR 054, Design method A,, under the responsibility of an engineer experienced in anchorages and masonry work.

Installation:

- Dry or wet structures
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

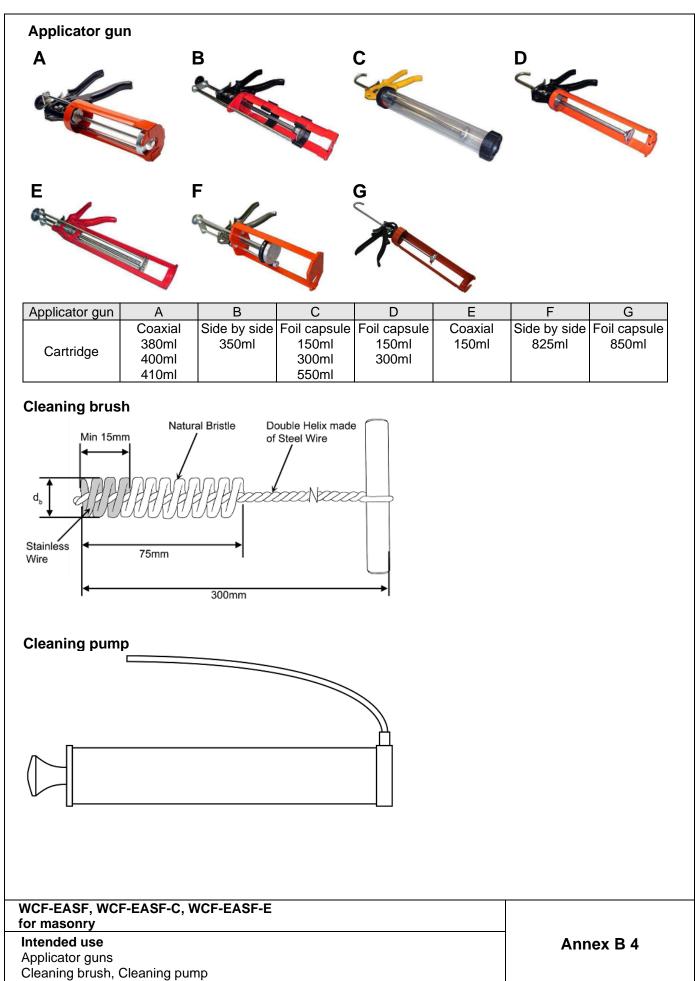
WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry

Intended use Specifications

APPENDIX 8 of 18

APPENDIX 9 of 18

Table B2:	Types and dimensions of block and bricks	
-----------	--	--



Brick No.	Strength class acc. to EN 771-4	L/W/H	f _b	ρ
		(mm)	(N/mm²)	(kg/dm ³)
N° 6	Autoclaved aerated concrete AAC2	599/375/249	≥ 2,0	≥ 0,35
N° 7	Autoclaved aerated concrete AAC3	599/375/249	≥ 3,0	≥ 0,40
N° 8	Autoclaved aerated concrete AAC4	599/375/249	≥ 4,0	≥ 0,50
N° 9	Autoclaved aerated concrete AAC5	599/375/249	≥ 5,0	≥ 0,60
N° 10	Autoclaved aerated concrete AAC6	499/240/250	≥ 6,0	≥ 0,65

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry

Intended use Brick types and properties

APPENDIX 10 of 18

Installation instructions						
	1. Drill the hole to the correct diameter and depth using a rotary percussive machine.	2x	2. Use the hole	the cleaning pump to clean		
	3. Use the cleaning brush to clean the hole. Diameter of cleaning brush according to Table B3, B5 or B7.	2x	4. Use the hole	the cleaning pump to clean		
	5. Use the cleaning brush to clean the hole. Diameter of cleaning brush according to Table B3, B5 or B7.	2×	6. Use the hole	the cleaning pump to clean		
	7. If use in hollow or perforated brick masonry:Plug the centering cap and insert the correct perforated sleeve flush with the surface of the base material.	1 Alexandre		e the hole is prepared the screw cap from the e.		
	9 . Attach the mixer nozzle and place the cartridge in the applicator gun.	217		pense the first part to until an even colour is ed.		
	11. Remove any free water from the hole.		end of t tubing i resin, w	ert the nozzle to the far he hole (using extension f necessary) and inject the rithdrawing the nozzle/tube hole fills.		
	13. If use in hollow or perforated brick masonry: Insert mixer nozzle to the end of the perforated sleeve and completely fill the sleeve with resin. Withdraw the mixer nozzle as the sleeve fills.		(steel e slight tv excess	nediately insert the fixing lement) slowly and with a visting motion. Remove resin from around the of the hole.		
	15. Leave the fixing undisturbed until the cure time (see Table B9) has elapsed.		the nut. torque r	ich the fixture and tighten Maximum installation moment according to 3, B5 or B7.		
WCF-EASF, W for masonry Intended use Installation ins				Annex B 5		
installation ins	SUUCIONS					

Page 12/19 of ETA 20/0618, issued of 01/12/2023 and replacing ETA 20/0618 issued on 07/04/2022

APPENDIX 12 of 18

Table B3: Installation parameters in solid or hollow masonry with sleeve							
Anchor type	Anchor type Anchor rod with sleeve						
Size			M8	M10	Μ	12	M16
Sieve sleeve	ls	[mm]	85	85	85 85		85
Sleve Sleeve	ds	[mm]	16	16	16	20	20
Nominal drill hole diameter	d ₀	[mm]	16	16	16	20	20
Diameter of cleaning brush	db	[mm]	20 ^{±1}	20 ^{±1}	20 ^{±1}	22 ^{±1}	22 ^{±1}
Depth of the drill hole	h ₀	[mm]		9	0		
Effective anchorage depth	h _{ef}	[mm]		8	85		
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9 12 14 18				
Torque moment	T _{inst} ≤	[Nm]	2				

Table B4: Edge distances and spacing in solid or hollow masonry with sleeve

Anchor rod							
		M8, M10, M12 ²)	M12 ³⁾ , M16			
Base material ¹⁾	Ccr = Cmin	Scr II = Smin II	Scr⊥ = Smin⊥	Ccr = Cmin	Scr II = Smin II	Scr⊥ = Smin⊥	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
Brick N° 1	100	245	110	120	245	110	
Brick N° 2	100	373	238	120	373	238	
Brick N° 3	128	255	255	128	255	255	
Brick N° 4	128	255	255	125	255	255	
Brick N° 5	100	239	248	120	239	248	

¹⁾ Brick N° according to Annex B 2

²⁾ M12 with sleeve TSN16/85

³⁾ M12 with sleeve TSN20/85

Table B5: Installation parameters in solid masonry without sleeve

Anchor type		Anchor rod without sleeve						
Size			M6	M8	M10	M12	M16	
Nominal drill hole diameter	do	[mm]	8	10	12	14	18	
Diameter of cleaning brush	db	[mm]	9 ^{±1}	14 ^{±1}	14 ^{±1}	14 ^{±1}	20 ^{±1}	
Depth of the drill hole	ho	[mm]	80	90				
Effective anchorage depth	h _{ef}	[mm]	80		9	0		
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18	
Torque moment	T _{inst} ≤	[Nm]		2				

Table B6: Edge distances and spacing in solid masonry without sleeve

			Anchor rod					
		M6		M8, M10, M12, M16				
Base material ¹⁾	Ccr = Cmin	Scr II = Smin II	Scr⊥= Smin⊥	Ccr = Cmin	Scr II = Smin II	Scr⊥= Smin⊥		
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
Brick N° 3	120	240	240	135	270	270		
Brick N° 4	120	240	240	135	270	270		

¹⁾ Brick N° according to Annex B 2

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry

Intended use Installation parameters Annex B 6

Page 13/19 of ETA 20/0618, issued of 01/12/2023 and replacing ETA 20/0618 issued on 07/04/2022

APPENDIX 13 of 18

Table B7: Installation parameter	Table B7: Installation parameters in autoclaved aerated concrete											
Base material					Brick No. 6 - 1	0						
Anchor type				Anchor rod								
					without sleeve	9						
Size			M6 M8 M10 M12 M16									
Nominal drill hole diameter	d_0	[mm]	8	10	12	14	18					
Diameter of	db	[mm]	9 ^{±1}	14 ^{±1}	14 ^{±1}	20 ^{±1}	20 ^{±1}					
cleaning brush	Ub	[]	3	14	14	20	20					
Depth of the drill hole	h ₀	[mm]		80		95	105					
Effective anchorage depth	h _{ef}	[mm]		90	100							
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	9	12	14	18					
Torque moment	T _{inst} ≤	[Nm]	2									

Table B8: Edge distances and spacing autoclaved aerated concrete

				Ancho	r rod					
	Ν	/16, M8, M1	0		M12		M16			
Base material ¹⁾	C _{cr} = C _{min}	Scr II = Smin II	Scr⊥ = Smin⊥	C _{cr} = C _{min}	S _{cr} II = Smin II	S _{cr} ⊥ = S _{min} ⊥	C _{cr} = C _{min}	Scr II = Smin II	S _{cr} ⊥ = S _{min} ⊥	
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
Brick N°6	113	225	225	135	270	270	150	300	300	
Brick N°7	113	225	225	135	270	270	150	300	300	
Brick N°8	113	225	225	135	270	270	150	300	300	
Brick N°9	113	225	225	135	270	270	150	300	300	
Brick N°10	113	225	225	135	270	270	150	300	300	

¹⁾ Brick N° according to Annex B 3

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry

Intended use Installation parameters

WCF-EASF			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+10	30 mins	-10 to -5	24 hours
+5	20 mins	-5 to 0	300 mins
0 to +5	15 mins	0 to +5	210 mins
+5 to +10	10 mins	+5 to +10	145 mins
+10 to +15	8 mins	+10 to +15	85 mins
+15 to +20	6 mins	+15 to +20	75 mins
+20 to +25	5 mins	+20 to +25	50 mins
+25 to +30	4 mins	+25 to +30	40 mins

Table B9. Minimum curing time

WCE-EASE-C

WCF-EASF-C			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+20	40 mins	-20 to -15 ¹⁾	24 hours
+20	30 mins	-15 to -10 ¹⁾	18 hours
+5	20 mins	-10 to -5	12 hours
+5	15 mins	-5 to 0	100 mins
0 to +5	10 mins	0 to +5	75 mins
+5 to +20	5 mins	+5 to +20	50 mins
+20	100 second	+20	20 mins

¹⁾ characteristic values of resistance see Annex C 2 and C 4

WCF-EASF-E			
Resin cartridge temperature [°C]	T Work [mins]	Base material Temperature [°C]	T Load [mins]
+15 to +20	15 mins	+15 to +20	5 hours
+20 to +25	10 mins	+20 to +25	145 mins
+25 to +30	7.5 mins	+25 to +30	85 mins
+30 to +35	5 mins	+30 to +35	50 mins
+35 to +40	3.5 mins	+35 to +40	40 mins

T work is typical gel time at highest temperature T load is set at the lowest temperature

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry

Intended use Working and curing time

APPENDIX 15 of 18

Base material		Anchor rods with sleeve N _{Rk} = V _{Rk} [kN] ¹⁾						ds with = V _{Rk} [k		ve
	M8	M10	M12	M12	M16	M6	M8	M10	M12	M16
Sleeve	16/85	16/85	16/85	20/85	20/85					
Brick N° 1	0,9	1,5	1,5	1,5	1,5					
Brick N° 2	2,0	2,0	2,0	2,5	2,5					
Brick N° 3	3,0	3,0	3,0	3,0	3,0	3,5	4,0	5,0	3,5	4,5
Brick N° 4	3,0	3,0	3,0	3,0	3,0	6,0	7,0	8,0	5,5	8,0
Brick N° 5	2,0	2,0	2,0	2,5	2,5					

¹⁾ For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}; N_{Rk,pb} according to TR 054 For V_{Rk,s} see Annex C1, Table C2; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C2: Characteristic resistance under shear loading - steel failure

Size			M6	M8	M10	M12	M16	Partial safety factor
Characteristic shear resistance								γMs
KPG 5.8	V _{Rk,s}	[kN]	5	9	15	21	39	1,25
KPG 8.8	V _{Rk,s}	[kN]	8	15	23	34	63	1,25
KPG 10.9	V _{Rk,s}	[kN]	10	18	29	42	79	1,50
KPG A2-70, KPG A4-70	V _{Rk,s}	[kN]	7	13	20	30	55	1,56
KPG A4-80	V _{Rk,s}	[kN]	8	15	23	34	63	1,33
KPG HCR	V _{Rk,s}	[kN]	7	13	20	30	55	1,25
KPG UHCR	V _{Rk,s}	[kN]	7	13	20	30	55	1,56
Characteristic bending moment	·			•	•			•
KPG 5.8	M _{Rk,s}	[N.m]	8	19	37	66	166	1,25
KPG 8.8	M _{Rk,s}	[N.m]	12	30	60	105	266	1,25
KPG 10.9	M _{Rk,s}	[N.m]	15	37	75	131	333	1,50
KPG A2-70, KPG A4-70	M _{Rk,s}	[N.m]	11	26	52	92	233	1,56
KPG A4-80	M _{Rk,s}	[N.m]	12	30	60	105	266	1,33
KPG HCR	M _{Rk,s}	[N.m]	11	26	52	92	233	1,25
KPG UHCR	M _{Rk,s}	[N.m]	11	26	52	92	233	1,56

Table C3: Displacements under tension and shear load

Base material	F [kN]	With sleeve				Without sleeve			
		δ _№ [mm]	δ _{N∞} [mm]	δ _{ν₀} [mm]	δ _{ν∞} [mm]	δ _№ [mm]	δ _{N∞} [mm]	δ _{ν₀} [mm]	δ _{V∞} [mm]
Hollow clay brick	N _{Rk} / (1,4 · γ _M)	0,5	1,0	1,0 ¹⁾	1,5 ¹⁾				
Solid clay brick	N _{Rk} / (1,4 · γ _M)	0,06	0,12	0,7 1)	1,0 ¹⁾	0,3	0,6	0,7	1,1
Solid calcium silicate brick	N _{Rk} / (1,4 · γ _M)	0,12	0,24	0,9 ¹⁾	1 ,4 ¹⁾	0,3	0,5	0,8	1,3
Perforated calcium silicate brick	N _{Rk} / (1,4 · γм)	0,1	0,2	0,9 ¹⁾	1,4 ¹⁾				

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C4: β - factors for job site tests according to TR 053

Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5
β - factor	0,78	0,83	0,85	0,85	0,85

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry

Performances

Characteristic resistance, displacement β-factors for job site testing under tension load Annex C 1

WCF-EA	WCF-EASF-C with installation temperature < -10°C											
Base material	A	Anchor rods with sleeve N _{Rk} = V _{Rk} [kN] ¹⁾				Ar		ds with = V _{Rk} [k		ve		
	M8	M10	M12	M12	M16	M6	M8	M10	M12	M16		
Sleeve	16/85	16/85	16/85	20/85	20/85							
Brick N° 1	0,9	1,5	1,5	1,5	1,5							
Brick N° 2	2,0	2,0	2,0	2,5	2,5							
Brick N° 3	3,0	3,0	3,0	3,0	3,0	3,0	4,0	5,0	3,5	4,5		
Brick N° 4	3,0	3,0	3,0	3,0	3,0	6,0	7,0	7,5	5,5	7,5		
Brick N° 5	2,0	2,0	2,0	2,5	2,5							

Table C5: Characteristic resistance under tension and shear loading WCF-EASF-C with installation temperature < -10°C

¹⁾ For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}; N_{Rk,pb} according to TR 054 For V_{Rk,s} see Annex C1, Table C2; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C6: Characteristic resistance under shear loading – steel failure

Size	M6	M8	M10	M12	M16	Partial safety factor ^{γΜs}
See Annex C	1					1013

Table C7: Displacements under tension and shear load

Base material	F [kN]	With sleeve				Without sleeve				
		δ _№ [mm]	δ _{N∞} [mm]	δ _{ν₀} [mm]	δ _{ν∞} [mm]	δ _№ [mm]	δ _{N∞} [mm]	δ _{ν₀} [mm]	δ _{V∞} [mm]	
See Annex C 1										

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C8: β - factors for job site tests according to TR 053 WCF-EASF-C with installation temperature < -10°C

	<u>•</u>	lotanatio			10 0
Brick N°	N° 1	N° 2	N° 3	N° 4	N° 5
β - factor	0,74	0,79	0,81	0,81	0,81

WCF-EASF-C	
for masonry	
Performances	Annex C 2
Characteristic resistance, displacement	
β-factors for job site testing under tension load	

APPENDIX 17 of 18

Table C9: Characteristic resistance under tension and shear loading										
Dece meterial	Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾									
base material	ase material Use conditions d/d Use conditions w/d and v				Use conditions d/d				w/w	
	M6	M8	M10	M12	M16	M6	M8	M10	M12	M16
Brick N° 6	0,9	0,9	0,9	0,9	2,0	0,75	0,75	0,75	0,9	1,5
Brick N° 7	0,9	1,5	1,5	2,0	3,0	0,9	1,2	1,2	1,5	2,5
Brick N° 8	1,2	2,5	2,5	3,0	4,0	0,9	2,0	2,0	2,5	3,0
Brick N° 9	1,5	3,0	3,0	4,0	5,0	1,2	2,5	2,5	3,5	4,0
Brick N° 10	1,5	4,0	4,0	5,0	6,0	1,2	3,0	3,0	4,0	4,5

¹⁾ For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,s}; N_{Rk,pb} according to TR 054 For V_{Rk,s} see Annex C 3, Table C10; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C10: Characteristic resistance under shear loading – steel failure

			- 3 -					
Size			M6	M8	M10	M12	M16	Partial safety factor
Characteristic shear resistance								γMs
KPG 4.6	V _{Rk,s}	[kN]	4	7	12	17	31	1,67
KPG 5.8	V _{Rk,s}	[kN]	5	9	15	21	39	1,25
KPG 8.8	V _{Rk,s}	[kN]	8	15	23	34	63	1,25
KPG 10.9	V _{Rk,s}	[kN]	10	18	29	42	79	1,50
KPG A2-70, KPG A4-70	V _{Rk,s}	[kN]	7	13	20	30	55	1,56
KPG A4-80	V _{Rk,s}	[kN]	8	15	23	34	63	1,33
KPG HCR	V _{Rk,s}	[kN]	7	13	20	30	55	1,25
KPG UHCR	V _{Rk,s}	[kN]	7	13	20	30	55	1,56
Characteristic bending moment								
KPG 4.6	M _{Rk,s}	[N.m]	6	15	30	52	133	1,67
KPG 5.8	M _{Rk,s}	[N.m]	8	19	37	66	166	1,25
KPG 8.8	M _{Rk,s}	[N.m]	12	30	60	105	266	1,25
KPG 10.9	M _{Rk,s}	[N.m]	15	37	75	131	333	1,50
KPG A2-70, KPG A4-70	M _{Rk,s}	[N.m]	11	26	52	92	233	1,56
KPG A4-80	M _{Rk,s}	[N.m]	12	30	60	105	266	1,33
KPG HCR	M _{Rk,s}	[N.m]	11	26	52	92	233	1,25
KPG UHCR	M _{Rk,s}	[N.m]	11	26	52	92	233	1,56

Table C11: Displacements under tension and shear load

Size			M6	M8	M10	M12	M16
Load	F	[kN]		N	_{Rk} / (1,4 · ງ	(м)	
	δ _{N0}	[mm]	0,27	0,24	0,32	0,39	0,96
AAC2	δ _{N∞}	[mm]	0,54	0,49	0,64	0,78	1,92
AACZ	δ _{V0}	[mm]	0,25	0,42	0,16	0,18	0,31
	δv∞	[mm]	0,38	0,62	0,23	0,27	0,46
	δ _{ΝΟ}	[mm]	0,64	0,24	0,32	0,39	0,96
AAC4	δ _{N∞}	[mm]	1,28	0,49	0,64	0,78	1,92
AAC4	δνο	[mm]	0,32	0,73	0,54	0,29	0,32
	δv∞	[mm]	0,47	1,09	0,81	0,44	0,48
	δησ	[mm]	0,64	0,06	0,09	0,10	0,05
AAC6	δ _{N∞}	[mm]	1,28	0,12	0,18	0,21	0,11
AACO	δ _{V0}	[mm]	0,32	0,73	0,54	0,29	0,32
	δv∞	[mm]	0,47	1,09	0,81	0,44	0,48

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C12: β - factors for job site tests according to TR 053 Brick N° N° 6 N° 8 N° 9 N° 10 N° 7 β - factor - Use conditions **d/d** 0,98 0,98 0,98 0,98 0,98 0,78 **β** - factor - Use conditions **d/w** and **w/w** 0,78 0,78 0,78 0,78

WCF-EASF, WCF-EASF-C, WCF-EASF-E for masonry Performances

Characteristic resistance, displacement β-factors for job site testing under tension load Annex C 3

APPENDIX 18 of 18

Table C13: Characteristic resistance under tension and shear loading WCF-EASF-C with installation temperature < -10°C</td>

Page meterial	Anchor rods N _{Rk} = V _{Rk} [kN] ¹⁾									
Base material	Use conditions d/d Use conditions w/d and							v/d and w/w		
	M6	M8	M10	M12	M16	M6	M8	M10	M12	M16
Brick N° 6	0,75	0,9	0,9	0,9	2,0	0,6	0,75	0,75	0,9	1,5
Brick N° 7	0,9	1,5	1,5	2,0	3,0	0,75	1,2	1,2	1,5	2,0
Brick N° 8	1,2	2,0	2,5	3,0	3,5	0,9	1,5	2,0	2,5	3,0
Brick N° 9	1,2	3,0	3,0	4,0	4,5	0,9	2,5	2,5	3,0	3,5
Brick N° 10	1,5	3,5	4,0	5,0	5,5	1,2	3,0	3,0	4,0	4,5

¹⁾ For design according TR 054: N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}; N_{Rk,pb} according to TR 054 For V_{Rk,s} see Annex C 3, Table C10; Calculation of V_{Rk,pb} and V_{Rk,c} according to TR 054

Table C14: Characteristic resistance under shear loading – steel failure

Size	M6	M8	M10	M12	M16	Partial safety factor
						γMs
See Anne	ex C 3					

Table C15: Displacements under tension and shear load

Size	M6	M8	M10	M12	M16
See Annex C 3					
1) the hole gen between helt and fixture shall be considered additionally					

¹⁾ the hole gap between bolt and fixture shall be considered additionally

Table C16: β - factors for job site tests according to TR 053 WCF-EASF-C with installation temperature < -10°C

Brick N°	N° 6	N° 7	N° 8	N° 9	N° 10	
β - factor - Use conditions d/d	0,95	0,95	0,95	0,95	0,95	
β - factor - Use conditions d/w and w/w	0,74	0,74	0,74	0,74	0,74	

WCF-EASF-C for masonry	
Performances	Annex C 4
Characteristic resistance, displacement	
β-factors for job site testing under tension load	